File size: 10,021 Bytes
992bd88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import random
import logging
import json
import os
from typing import List

from fastapi import APIRouter, Depends, HTTPException
from pydantic import BaseModel
from sqlalchemy import select, delete
from sqlalchemy.ext.asyncio import AsyncSession

from app.auth import get_current_user
from app.database import get_db
from app.models import Feed, User
from langchain_groq import ChatGroq
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from supabase.client import create_client
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.prompts import ChatPromptTemplate

try:
    import wikipediaapi
except Exception:
    wikipediaapi = None

# Logger early init (used during module init below)
logger = logging.getLogger("app.feeds")
if not logger.handlers:
    handler = logging.StreamHandler()
    formatter = logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")
    handler.setFormatter(formatter)
    logger.addHandler(handler)
logger.setLevel(logging.INFO)

# Supabase Initialization (independent of other modules)
SUPABASE_URL = os.getenv("SUPABASE_URL")
SUPABASE_KEY = os.getenv("SUPABASE_KEY")
supabase_client = None
if SUPABASE_URL and SUPABASE_KEY:
    try:
        supabase_client = create_client(SUPABASE_URL, SUPABASE_KEY)
        logger.info("✅ Supabase client (feeds) initialized.")
    except Exception as e:
        logger.warning(f"Supabase init failed in feeds: {e}")

router = APIRouter()


class FeedOut(BaseModel):
    id: int
    title: str
    content: str
    media_url: str | None = None
    tags: list[str] | None = None
    category: str | None = None
    source: str | None = None
    relevance_score: int
    likes: int
    comments_count: int
    shares: int

    class Config:
        from_attributes = True


def _fallback_generate(user: User) -> List[dict]:
    topics = [
        "career-growth", "interview-prep", "project-ideas", "resume-tips",
        "networking", "internships", "leetcode", "system-design", "ai-ml",
        "cloud", "devops", "frontend", "backend"
    ]
    base_tags = ["tips", "guide", "beginner", "advanced", "2025", "best-practices"]

    user_topic = (user.preparing_for or "career-growth").lower().replace(" ", "-")
    chosen_topics = list({user_topic} | set(random.sample(topics, k=4)))

    items: List[dict] = []
    for _ in range(25):
        topic = random.choice(chosen_topics)
        title = f"{topic.title()} insights for {user.name or 'you'}"
        content = (
            f"Actionable {topic.replace('-', ' ')} advice tailored for {user.name or 'your profile'}. "
            f"Focus on consistent practice, portfolio building, and networking."
        )
        tags = list({topic, *(random.sample(base_tags, k=3))})
        items.append({
            "title": title[:200],
            "content": content,
            "media_url": None,
            "tags": ",".join(tags),
            "category": topic,
            "source": "dubsway-ai",
            "relevance_score": random.randint(70, 100),
            "likes": random.randint(0, 50),
            "comments_count": random.randint(0, 20),
            "shares": random.randint(0, 10),
        })
    return items


def _agentic_generate(user: User) -> List[dict]:
    """Generate context-aware feeds using vector DB, public info, and LLM.
    Falls back to heuristic generation if LLM not available.
    """
    # 1) Gather user context
    user_focus = (user.preparing_for or "career growth").strip()

    # 2) Retrieve user-related docs from Supabase vector store via LangChain
    doc_snippets = ""
    try:
        if supabase_client is not None:
            embeddings = OpenAIEmbeddings()
            vector_store = SupabaseVectorStore(
                client=supabase_client,
                embedding=embeddings,
                table_name="documents",
                query_name="match_documents",
            )
            retriever = vector_store.as_retriever(search_kwargs={"k": 8, "filter": {"user_id": user.id}})
            # Use a simple seed question from the user's focus
            seed_q = f"Key takeaways for {user_focus}"
            retrieved = retriever.invoke(seed_q)
            # retrieved may be list of docs depending on LC version
            docs = retrieved if isinstance(retrieved, list) else retrieved.get("context", [])
            parts: List[str] = []
            for d in docs[:10]:
                try:
                    parts.append(getattr(d, "page_content", "")[:400])
                except Exception:
                    pass
            doc_snippets = "\n".join(parts)[:4000]
    except Exception as e:
        logger.warning(f"Supabase retrieval failed: {e}")

    # 3) Pull public info (Wikipedia summary on user focus)
    public_summary = ""
    try:
        if wikipediaapi:
            wiki = wikipediaapi.Wikipedia(language='en', user_agent='DubswayVideoAI/1.0 (contact: support@dubsway.ai)')
            page = wiki.page(user_focus)
            if page and page.exists():
                public_summary = page.summary[:1200]
    except Exception as e:
        logger.warning(f"Wikipedia fetch failed: {e}")

    # 4) Use Groq LLM to synthesize 25 feeds
    try:
        llm = ChatGroq(groq_api_key=os.getenv("GROQ_API_KEY"), model_name=os.getenv("GROQ_MODEL", "llama-3.3-70b-versatile"))
        system = (
            "You are a career coach assistant. Create 25 short personalized feed items that help the user grow "
            "in their career. Each item should be practical and contextual to the user focus, using the given "
            "context notes and public info. Output strictly JSON array with objects having keys: title, content, "
            "tags (array of strings), category, source."
        )
        prompt = (
            f"User name: {user.name or 'User'}\n"
            f"User focus: {user_focus}\n\n"
            f"Context from user's vector docs (may be empty):\n{doc_snippets}\n\n"
            f"Public info (may be empty):\n{public_summary}\n\n"
            f"Generate 25 items. Keep title <= 120 chars and content 1-2 sentences."
        )
        resp = llm.invoke([{"role": "system", "content": system + " Respond ONLY with a JSON array."}, {"role": "user", "content": prompt}])
        text = resp.content if hasattr(resp, "content") else str(resp)
        # Normalize potential markdown code fences and extract JSON array
        text_stripped = text.strip()
        if text_stripped.startswith("```)" ):
            text_stripped = text_stripped.strip('`')
        if text_stripped.startswith("```json"):
            text_stripped = text_stripped[7:]
        if text_stripped.startswith("```") and text_stripped.endswith("```"):
            text_stripped = text_stripped[3:-3]
        # Attempt to find a JSON array inside
        try:
            data = json.loads(text_stripped)
        except Exception:
            start = text_stripped.find('[')
            end = text_stripped.rfind(']')
            if start != -1 and end != -1 and end > start:
                data = json.loads(text_stripped[start:end+1])
            else:
                raise
        items: List[dict] = []
        for it in data[:25]:
            tags_joined = ",".join(it.get("tags", [])[:6]) if isinstance(it.get("tags"), list) else None
            items.append({
                "title": (it.get("title") or "").strip()[:200] or "Career insight",
                "content": (it.get("content") or "").strip() or "Practical career tip.",
                "media_url": None,
                "tags": tags_joined,
                "category": (it.get("category") or user_focus)[:64],
                "source": (it.get("source") or "agentic-ai")[:64],
                "relevance_score": random.randint(80, 100),
                "likes": 0,
                "comments_count": 0,
                "shares": 0,
            })
        # Ensure we always return 25
        if len(items) < 25:
            items.extend(_fallback_generate(user)[: 25 - len(items)])
        return items[:25]
    except Exception as e:
        logger.error(f"Agentic generation failed: {e}")
        return _fallback_generate(user)


@router.get("/feeds", response_model=List[FeedOut])
async def get_feeds(current_user: User = Depends(get_current_user),
                    db: AsyncSession = Depends(get_db)):
    # Auto-refresh: clear previous feeds for this user
    try:
        await db.execute(delete(Feed).where(Feed.user_id == current_user.id))
        await db.commit()
    except Exception as e:
        await db.rollback()
        logger.error(f"Failed deleting old feeds: {e}")
        raise HTTPException(status_code=500, detail="Failed refreshing feeds")

    # Generate new 25 items (agentic with fallback)
    items = _agentic_generate(current_user)

    # Insert into DB
    try:
        feed_rows = [
            Feed(user_id=current_user.id, **item) for item in items
        ]
        db.add_all(feed_rows)
        await db.commit()
    except Exception as e:
        await db.rollback()
        logger.error(f"Failed inserting feeds: {e}")
        raise HTTPException(status_code=500, detail="Failed storing feeds")

    # Return top 25 ordered by relevance desc, then recent
    result = await db.execute(
        select(Feed).where(Feed.user_id == current_user.id).order_by(Feed.relevance_score.desc(), Feed.id.desc()).limit(25)
    )
    rows = result.scalars().all()

    # Convert comma tags to list for response
    out: List[FeedOut] = []
    for r in rows:
        out.append(FeedOut(
            id=r.id,
            title=r.title,
            content=r.content,
            media_url=r.media_url,
            tags=(r.tags.split(",") if r.tags else None),
            category=r.category,
            source=r.source,
            relevance_score=r.relevance_score or 0,
            likes=r.likes or 0,
            comments_count=r.comments_count or 0,
            shares=r.shares or 0,
        ))
    return out