File size: 6,867 Bytes
a408f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import logging
from typing import List, Optional
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Pinecone
from pinecone import Pinecone, ServerlessSpec

# Setup logger
logger = logging.getLogger("app.utils.online_vector_store")
logger.setLevel(logging.INFO)
if not logger.handlers:
    handler = logging.StreamHandler()
    formatter = logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")
    handler.setFormatter(formatter)
    logger.addHandler(handler)

class OnlineVectorStore:
    def __init__(self):
        self.pinecone_api_key = os.getenv("PINECONE_API_KEY")
        self.pinecone_environment = os.getenv("PINECONE_ENVIRONMENT", "gcp-starter")
        self.index_name = "dubsway-video-ai"
        
        if not self.pinecone_api_key:
            logger.warning("PINECONE_API_KEY not found. Using fallback local storage.")
            self.use_pinecone = False
        else:
            self.use_pinecone = True
            self._initialize_pinecone()
    
    def _initialize_pinecone(self):
        """Initialize Pinecone client and create index if needed."""
        try:
            pc = Pinecone(api_key=self.pinecone_api_key)
            
            # Check if index exists
            if self.index_name not in pc.list_indexes().names():
                logger.info(f"Creating Pinecone index: {self.index_name}")
                pc.create_index(
                    name=self.index_name,
                    dimension=1536,  # OpenAI embeddings dimension
                    metric="cosine",
                    spec=ServerlessSpec(
                        cloud="aws",
                        region="us-east-1"
                    )
                )
                logger.info(f"Pinecone index {self.index_name} created successfully")
            else:
                logger.info(f"Using existing Pinecone index: {self.index_name}")
                
        except Exception as e:
            logger.error(f"Failed to initialize Pinecone: {e}")
            self.use_pinecone = False
    
    def add_documents(self, documents: List[Document], user_id: int) -> bool:
        """Add documents to the vector store."""
        try:
            if not documents:
                logger.warning("No documents to add")
                return False
            
            # Add user_id metadata to each document
            for doc in documents:
                if not hasattr(doc, 'metadata'):
                    doc.metadata = {}
                doc.metadata['user_id'] = user_id
                doc.metadata['source'] = 'video_analysis'
            
            if self.use_pinecone:
                return self._add_to_pinecone(documents, user_id)
            else:
                logger.warning("Pinecone not available, skipping vector storage")
                return False
                
        except Exception as e:
            logger.error(f"Failed to add documents to vector store: {e}")
            return False
    
    def _add_to_pinecone(self, documents: List[Document], user_id: int) -> bool:
        """Add documents to Pinecone."""
        try:
            embeddings = OpenAIEmbeddings()
            
            # Create Pinecone vector store
            vector_store = Pinecone.from_documents(
                documents=documents,
                embedding=embeddings,
                index_name=self.index_name,
                namespace=f"user_{user_id}"
            )
            
            logger.info(f"Successfully added {len(documents)} documents to Pinecone for user {user_id}")
            return True
            
        except Exception as e:
            logger.error(f"Failed to add documents to Pinecone: {e}")
            return False
    
    def search(self, query: str, user_id: int, k: int = 5) -> List[Document]:
        """Search for similar documents."""
        try:
            if not self.use_pinecone:
                logger.warning("Pinecone not available, returning empty results")
                return []
            
            embeddings = OpenAIEmbeddings()
            
            # Create Pinecone vector store for searching
            vector_store = PineconeVectorStore.from_existing_index(
                index_name=self.index_name,
                embedding=embeddings,
                namespace=f"user_{user_id}"
            )
            
            # Search for similar documents
            results = vector_store.similarity_search(
                query=query,
                k=k,
                filter={"user_id": user_id}
            )
            
            logger.info(f"Found {len(results)} similar documents for user {user_id}")
            return results
            
        except Exception as e:
            logger.error(f"Failed to search vector store: {e}")
            return []
    
    def get_user_documents(self, user_id: int, limit: int = 50) -> List[Document]:
        """Get all documents for a specific user."""
        try:
            if not self.use_pinecone:
                logger.warning("Pinecone not available, returning empty results")
                return []
            
            embeddings = OpenAIEmbeddings()
            
            # Create Pinecone vector store for searching
            vector_store = PineconeVectorStore.from_existing_index(
                index_name=self.index_name,
                embedding=embeddings,
                namespace=f"user_{user_id}"
            )
            
            # Get all documents for the user
            results = vector_store.similarity_search(
                query="",  # Empty query to get all documents
                k=limit,
                filter={"user_id": user_id}
            )
            
            logger.info(f"Retrieved {len(results)} documents for user {user_id}")
            return results
            
        except Exception as e:
            logger.error(f"Failed to get user documents: {e}")
            return []
    
    def delete_user_documents(self, user_id: int) -> bool:
        """Delete all documents for a specific user."""
        try:
            if not self.use_pinecone:
                logger.warning("Pinecone not available, skipping deletion")
                return False
            
            pc = Pinecone(api_key=self.pinecone_api_key)
            index = pc.Index(self.index_name)
            
            # Delete all vectors in the user's namespace
            index.delete(namespace=f"user_{user_id}")
            
            logger.info(f"Successfully deleted all documents for user {user_id}")
            return True
            
        except Exception as e:
            logger.error(f"Failed to delete user documents: {e}")
            return False

# Global instance
vector_store = OnlineVectorStore()