{ "run_info": { "created_at": "2025-06-19T20:53:39+00:00", "total_time": 2024.6820476150024, "experiment_name": "vera/llama-3.2-3B-default", "peft_branch": "main", "train_config": { "model_id": "meta-llama/Llama-3.2-3B", "dtype": "bfloat16", "max_seq_length": 768, "batch_size": 4, "batch_size_eval": 50, "max_steps": 5000, "eval_steps": 250, "compile": false, "query_template": "Question: {query} Think step by step.\nAnswer:", "seed": 0, "grad_norm_clip": 1.0, "optimizer_type": "AdamW", "optimizer_kwargs": { "lr": 0.001 }, "lr_scheduler": "cosine", "use_amp": false, "autocast_adapter_dtype": true, "generation_kwargs": { "max_length": 800, "max_new_tokens": 300 }, "attn_implementation": null }, "peft_config": { "task_type": null, "peft_type": "VERA", "auto_mapping": null, "base_model_name_or_path": "meta-llama/Llama-3.2-3B", "revision": null, "inference_mode": false, "r": 256, "target_modules": [ "v_proj", "q_proj" ], "projection_prng_key": 0, "save_projection": true, "vera_dropout": 0.0, "d_initial": 0.1, "fan_in_fan_out": false, "bias": "none", "modules_to_save": null, "init_weights": true, "layers_to_transform": null, "layers_pattern": null }, "error_msg": "" }, "train_info": { "accelerator_memory_reserved_avg": 11489715316, "accelerator_memory_max": 21596471296, "accelerator_memory_reserved_99th": 17291123097, "train_time": 1819.9693055349999, "file_size": 6821968, "num_trainable_params": 129024, "num_total_params": 3212878848, "status": "success", "metrics": [ { "step": 250, "valid accuracy": 0.0, "train loss": 1.3017588877677917, "train samples": 1000, "train time": 32.843521857023006, "eval time": 11.480974874997628, "tokens / sec": 6446.294064372017, "mem allocated avg": 6784826523.648, "mem reserved avg": 11538438029.312, "elapsed time": 95.45296428899746 }, { "step": 500, "valid accuracy": 0.28, "train loss": 1.0202219936847687, "train samples": 2000, "train time": 32.35236015598639, "eval time": 11.4980273259971, "tokens / sec": 6429.051821788439, "mem allocated avg": 6777359808.512, "mem reserved avg": 11429948162.048, "elapsed time": 183.95939499299857 }, { "step": 750, "valid accuracy": 0.38, "train loss": 0.8040032889842987, "train samples": 3000, "train time": 32.52055500800634, "eval time": 11.426841341002728, "tokens / sec": 6592.784162115804, "mem allocated avg": 6787965165.568, "mem reserved avg": 11585061912.576, "elapsed time": 272.8589564269969 }, { "step": 1000, "valid accuracy": 0.3, "train loss": 0.7544035723209381, "train samples": 4000, "train time": 32.27830113501477, "eval time": 11.54098314699877, "tokens / sec": 6454.3669485133405, "mem allocated avg": 6779215933.44, "mem reserved avg": 11460172316.672, "elapsed time": 361.1500098109973 }, { "step": 1250, "valid accuracy": 0.44, "train loss": 0.7379197257757187, "train samples": 5000, "train time": 32.060909217962035, "eval time": 11.406497389998549, "tokens / sec": 6504.431879404317, "mem allocated avg": 6779128844.288, "mem reserved avg": 11454770053.12, "elapsed time": 449.3482204989996 }, { "step": 1500, "valid accuracy": 0.4, "train loss": 0.7252234178781509, "train samples": 6000, "train time": 31.98088176901365, "eval time": 11.480169268001191, "tokens / sec": 6545.504326988923, "mem allocated avg": 6780286265.344, "mem reserved avg": 11479667441.664, "elapsed time": 537.3097453219998 }, { "step": 1750, "valid accuracy": 0.4, "train loss": 0.7148357192277909, "train samples": 7000, "train time": 32.29452324002341, "eval time": 11.44221062500219, "tokens / sec": 6482.678144650271, "mem allocated avg": 6782215264.256, "mem reserved avg": 11493600919.552, "elapsed time": 625.780868398997 }, { "step": 2000, "valid accuracy": 0.4, "train loss": 0.7139411936998368, "train samples": 8000, "train time": 32.33002986999054, "eval time": 11.472246884000924, "tokens / sec": 6424.243987253105, "mem allocated avg": 6778636718.08, "mem reserved avg": 11439217573.888, "elapsed time": 714.3076436519987 }, { "step": 2250, "valid accuracy": 0.38, "train loss": 0.7067342863082886, "train samples": 9000, "train time": 32.69249906902769, "eval time": 11.424881449998793, "tokens / sec": 6574.841511692143, "mem allocated avg": 6789716504.576, "mem reserved avg": 11617542602.752, "elapsed time": 803.4051666009982 }, { "step": 2500, "valid accuracy": 0.4, "train loss": 0.7048580280542374, "train samples": 10000, "train time": 31.796681229010574, "eval time": 11.401134708998143, "tokens / sec": 6477.625715607085, "mem allocated avg": 6775192217.6, "mem reserved avg": 11386755219.456, "elapsed time": 890.7853266579987 }, { "step": 2750, "valid accuracy": 0.36, "train loss": 0.6994425257444382, "train samples": 11000, "train time": 32.589996781029186, "eval time": 6.453208308001194, "tokens / sec": 6501.412118068606, "mem allocated avg": 6785945655.296, "mem reserved avg": 11552530890.752, "elapsed time": 974.6122346880002 }, { "step": 3000, "valid accuracy": 0.4, "train loss": 0.6912879683971405, "train samples": 12000, "train time": 32.34826778500428, "eval time": 11.457833226999355, "tokens / sec": 6452.617536966281, "mem allocated avg": 6780318763.008, "mem reserved avg": 11474030297.088, "elapsed time": 1062.897270567999 }, { "step": 3250, "valid accuracy": 0.4, "train loss": 0.700449936747551, "train samples": 13000, "train time": 32.51472582996939, "eval time": 8.004199169998174, "tokens / sec": 6486.322569744963, "mem allocated avg": 6782387701.76, "mem reserved avg": 11501452656.64, "elapsed time": 1148.3985279560002 }, { "step": 3500, "valid accuracy": 0.36, "train loss": 0.6886729755401612, "train samples": 14000, "train time": 32.572147220984334, "eval time": 11.456443364000734, "tokens / sec": 6439.550901479111, "mem allocated avg": 6781381988.352, "mem reserved avg": 11484943876.096, "elapsed time": 1237.2252680229976 }, { "step": 3750, "valid accuracy": 0.38, "train loss": 0.6851948540210724, "train samples": 15000, "train time": 32.8770313250061, "eval time": 8.042231839001033, "tokens / sec": 6591.318962402083, "mem allocated avg": 6791807023.104, "mem reserved avg": 11653781389.312, "elapsed time": 1323.4750151669978 }, { "step": 4000, "valid accuracy": 0.36, "train loss": 0.7032276903390884, "train samples": 16000, "train time": 31.65130396198947, "eval time": 7.9955749260007, "tokens / sec": 6457.016754994822, "mem allocated avg": 6773653422.08, "mem reserved avg": 11367989903.36, "elapsed time": 1407.2714081800004 }, { "step": 4250, "valid accuracy": 0.36, "train loss": 0.684476065993309, "train samples": 17000, "train time": 32.02934406197164, "eval time": 8.007123895000404, "tokens / sec": 6599.854170943876, "mem allocated avg": 6784119472.128, "mem reserved avg": 11519949537.28, "elapsed time": 1492.0019941529972 }, { "step": 4500, "valid accuracy": 0.38, "train loss": 0.6939880999326706, "train samples": 18000, "train time": 31.936327281997364, "eval time": 9.855819755000994, "tokens / sec": 6507.260467522446, "mem allocated avg": 6777879162.88, "mem reserved avg": 11436331892.736, "elapsed time": 1578.2498042659972 }, { "step": 4750, "valid accuracy": 0.36, "train loss": 0.68637368786335, "train samples": 19000, "train time": 32.33460194401778, "eval time": 6.469711448000453, "tokens / sec": 6492.704019164238, "mem allocated avg": 6781104441.344, "mem reserved avg": 11484004352.0, "elapsed time": 1662.171022565999 }, { "step": 5000, "valid accuracy": 0.38, "train loss": 0.6926896897554398, "train samples": 20000, "train time": 32.14674746405217, "eval time": 8.441190715999255, "tokens / sec": 6479.038049896257, "mem allocated avg": 6777818853.376, "mem reserved avg": 11434117300.224, "elapsed time": 1747.4833575960001 }, { "step": 5000, "test accuracy": 0.3684609552691433, "train loss": 0.6926896897554398, "train samples": 20000, "train total tokens": 4198051 } ] }, "meta_info": { "model_info": { "sha": "13afe5124825b4f3751f836b40dafda64c1ed062", "created_at": "2024-09-18T15:23:48+00:00" }, "dataset_info": { "metamath": { "sha": "aa4f34d3d2d3231299b5b03d9b3e5a20da45aa18", "created_at": "2023-09-21T17:22:46+00:00" }, "gsm8k": { "sha": "e53f048856ff4f594e959d75785d2c2d37b678ee", "created_at": "2022-04-12T10:22:10+00:00" } }, "package_info": { "transformers-version": "4.52.4", "transformers-commit-hash": null, "peft-version": "0.15.2.dev0", "peft-commit-hash": "5fe7f8f8abe914d313fc3751f2ea92de7718fbaf", "datasets-version": "3.6.0", "datasets-commit-hash": null, "bitsandbytes-version": "0.46.0", "bitsandbytes-commit-hash": null, "torch-version": "2.7.1+cu126", "torch-commit-hash": null }, "system_info": { "system": "Linux", "release": "6.8.0-1029-aws", "version": "#31-Ubuntu SMP Wed Apr 23 18:42:41 UTC 2025", "machine": "x86_64", "processor": "x86_64", "accelerator": "NVIDIA L40S" }, "pytorch_info": "PyTorch built with:\n - GCC 11.2\n - C++ Version: 201703\n - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 12.6\n - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90\n - CuDNN 90.7.1 (built against CUDA 12.8)\n - Built with CuDNN 90.5.1\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=e2d141dbde55c2a4370fac5165b0561b6af4798b, CUDA_VERSION=12.6, CUDNN_VERSION=9.5.1, CXX_COMPILER=/opt/rh/gcc-toolset-11/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.7.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, \n" } }