File size: 23,039 Bytes
7c447a5 3ca6cb8 7c447a5 4f1edc3 7c447a5 ad9612f 7c447a5 a19a694 7c447a5 53334e9 3ca6cb8 7c447a5 3ca6cb8 7c447a5 3ca6cb8 7c447a5 3ca6cb8 7c447a5 ad9612f 7c447a5 3ca6cb8 7c447a5 3ca6cb8 7c447a5 3ca6cb8 7c447a5 53334e9 7c447a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
from flask import Flask, request, jsonify, send_file, send_from_directory
from flask_cors import CORS
import pandas as pd
import torch
import os
from datetime import datetime
from tqdm import tqdm
import logging
from functools import lru_cache
from typing import Optional, List, Dict, Any
from utils.utils import _ensure_plot_saved
os.environ["MPLBACKEND"] = "Agg"
os.environ["QT_QPA_PLATFORM"] = "offscreen"
logging.basicConfig(level=logging.INFO)
from utils.sampling import rank_sample
try:
from transformers import TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
print("β transformers training components imported")
except Exception as e:
print(f"β transformers training import failed: {e}")
def finetune(*args, **kwargs):
print("Warning: Transformers training components not available, skipping fine-tuning")
return None
# π€ datasets
try:
from datasets import (
load_dataset,
load_dataset_builder,
get_dataset_config_names,
get_dataset_split_names,
Features,
)
print("β datasets imported")
except Exception as e:
print(f"β datasets import failed: {e}")
raise
from utils.utils import (
generate_topk_samples,
evaluate_generated_outputs,
load_model_and_tokenizer,
generate_counterfactual_augmentations,
)
print("β utils imported")
app = Flask(__name__)
CORS(app)
_MODELS = {}
_CURRENT_DATASET = None
_GENERATION_RESULTS = None
@app.route('/tmp/<path:filename>')
def serve_data(filename):
import os
from flask import Response
print(f"[Static] Requested file: {filename}")
data_dir = os.path.abspath('/tmp')
file_path = os.path.join(data_dir, filename)
print(f"[Static] Full path: {file_path}")
print(f"[Static] File exists: {os.path.exists(file_path)}")
if not os.path.exists(file_path):
return "File not found", 404
try:
with open(file_path, 'rb') as f:
file_data = f.read()
if filename.endswith('.png'):
mimetype = 'image/png'
elif filename.endswith('.jpg') or filename.endswith('.jpeg'):
mimetype = 'image/jpeg'
elif filename.endswith('.csv'):
mimetype = 'text/csv'
elif filename.endswith('.html'): # π ζ°ε’ιθ‘
mimetype = 'text/html; charset=utf-8'
else:
mimetype = 'application/octet-stream'
print(f"[Static] Serving {len(file_data)} bytes as {mimetype}")
return Response(file_data, mimetype=mimetype)
except Exception as e:
print(f"[Static] Error reading file: {e}")
return f"Error reading file: {str(e)}", 500
@app.route('/debug/files', methods=['GET'])
def debug_files():
try:
data_dir = os.path.abspath('/tmp/data')
if not os.path.exists(data_dir):
return jsonify({"error": "Data directory not found", "path": data_dir})
files = []
for f in os.listdir(data_dir):
file_path = os.path.join(data_dir, f)
files.append({
"name": f,
"path": file_path,
"exists": os.path.exists(file_path),
"size": os.path.getsize(file_path) if os.path.exists(file_path) else 0
})
return jsonify({
"data_directory": data_dir,
"files": files
})
except Exception as e:
return jsonify({"error": str(e)})
def get_model(model_name: str):
if model_name in _MODELS:
print(f"Using cached model: {model_name}")
return _MODELS[model_name]
print(f"Loading new model: {model_name}")
tokenizer, model, device = load_model_and_tokenizer(model_name)
_MODELS[model_name] = (tokenizer, model, device)
return tokenizer, model, device
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"loaded_models": list(_MODELS.keys()),
"dataset_loaded": _CURRENT_DATASET is not None,
"generation_results_available": _GENERATION_RESULTS is not None
})
def _flatten_features(feats, prefix: str = "") -> List[str]:
cols: List[str] = []
try:
items = feats.items() if isinstance(feats, (Features, dict)) else feats.items()
except Exception:
try:
return list(feats.keys())
except Exception:
return cols
for name, sub in items:
full = f"{prefix}.{name}" if prefix else name
try:
if isinstance(sub, (Features, dict)):
cols += _flatten_features(sub, prefix=full)
else:
cols.append(full)
except Exception:
cols.append(full)
return cols
@lru_cache(maxsize=256)
def _get_dataset_fields_cached(dataset_id: str, config: Optional[str], split: str) -> List[str]:
try:
builder = load_dataset_builder(dataset_id, name=config)
feats = builder.info.features
fields = _flatten_features(feats)
return sorted(set(fields))
except Exception as e_builder:
try:
ds = load_dataset(dataset_id, name=config, split=split, streaming=True)
first = next(iter(ds.take(1)), None)
if first is None:
return []
fields = list(first.keys())
return sorted(set(fields))
except Exception as e_stream:
raise RuntimeError(f"builder_error={e_builder}; streaming_error={e_stream}")
@app.route('/dataset/fields', methods=['GET'])
def dataset_fields():
dataset_id = request.args.get('id')
cfg = request.args.get('config')
split = request.args.get('split', 'train')
if not dataset_id:
return jsonify({"error": "Missing required query param 'id'"}), 400
try:
fields = _get_dataset_fields_cached(dataset_id, cfg, split)
return jsonify({
"fields": fields,
"datasetId": dataset_id,
"config": cfg,
"split": split,
"source": "huggingface-builder" if fields else "unknown"
})
except Exception as e:
return jsonify({
"error": "Failed to fetch dataset fields",
"datasetId": dataset_id,
"config": cfg,
"split": split,
"detail": str(e)
}), 400
@app.route('/dataset/meta', methods=['GET'])
def dataset_meta():
dataset_id = request.args.get('id')
if not dataset_id:
return jsonify({"error": "Missing required query param 'id'"}), 400
try:
configs = get_dataset_config_names(dataset_id)
except Exception as e:
configs = []
logging.warning(f"get_dataset_config_names failed for {dataset_id}: {e}")
splits: List[str] = []
try:
if configs:
try:
b0 = load_dataset_builder(dataset_id, name=configs[0])
splits = sorted(list(b0.info.splits) or [])
except Exception:
splits = get_dataset_split_names(dataset_id, configs[0])
else:
try:
b = load_dataset_builder(dataset_id)
splits = sorted(list(b.info.splits) or [])
except Exception:
splits = get_dataset_split_names(dataset_id)
except Exception as e:
logging.warning(f"get splits failed for {dataset_id}: {e}")
splits = []
return jsonify({
"datasetId": dataset_id,
"configs": configs,
"splits": splits
})
@app.route('/dataset/field-stats', methods=['GET'])
def dataset_field_stats():
dataset_id = request.args.get('id')
cfg = request.args.get('config')
split = request.args.get('split', 'train')
field = request.args.get('field')
subfield = request.args.get('subfield')
if not dataset_id or not field:
return jsonify({"error": "Missing required query params 'id' or 'field'"}), 400
try:
ds = load_dataset(dataset_id, name=cfg, split=split, streaming=True)
max_rows = 50000
counter: Dict[str, Any] = {}
print(f"[field-stats] Computing stats for '{field}'" + (f" β '{subfield}'" if subfield else ""))
for i, row in enumerate(ds):
if i >= max_rows:
break
main_val = row.get(field)
if main_val is None:
continue
if subfield:
sub_val = row.get(subfield)
if sub_val is None:
continue
counter.setdefault(main_val, {})
counter[main_val][sub_val] = counter[main_val].get(sub_val, 0) + 1
else:
counter[main_val] = counter.get(main_val, 0) + 1
return jsonify({
"field": field,
"subfield": subfield,
"datasetId": dataset_id,
"config": cfg,
"split": split,
"counts": counter
})
except Exception as e:
return jsonify({
"error": f"Failed to compute field stats: {str(e)}",
"datasetId": dataset_id,
"config": cfg,
"split": split,
"field": field,
"subfield": subfield
}), 500
def _parse_selected_groups_from_config(config: dict) -> List[str]:
raw = config.get('selectedCfFields', []) or []
out: List[str] = []
for s in raw:
s = (s or "").strip()
if not s:
continue
if "/" in s:
out.append(s.split("/")[-1])
else:
out.append(s)
seen = set()
uniq = []
for x in out:
if x not in seen:
uniq.append(x)
seen.add(x)
return uniq
def stratified_sample_by_category(df: pd.DataFrame, category_col: str, groups: List[str], total_n: Optional[int]) -> pd.DataFrame:
if total_n is None or total_n <= 0:
return df
groups_present = [g for g in groups if g in df[category_col].unique()]
if not groups_present:
return df.sample(n=min(total_n, len(df)), random_state=42)
base_each = max(1, total_n // max(1, len(groups_present)))
remainder = max(0, total_n - base_each * len(groups_present))
parts = []
for g in groups_present:
gdf = df[df[category_col] == g]
need = min(base_each, len(gdf))
if need > 0:
parts.append(gdf.sample(n=need, random_state=42))
i = 0
while remainder > 0 and len(df) > 0:
g = groups_present[i % len(groups_present)]
gdf = df[df[category_col] == g]
if len(gdf) > 0:
parts.append(gdf.sample(n=1, replace=(len(gdf) < 1), random_state=42 + remainder))
remainder -= 1
i += 1
out = pd.concat(parts, ignore_index=True) if parts else pd.DataFrame(columns=df.columns)
if len(out) < total_n and len(df) > len(out):
rest = min(total_n - len(out), len(df) - len(out))
pool = df.drop(out.index, errors="ignore")
if len(pool) > 0 and rest > 0:
out = pd.concat([out, pool.sample(n=min(rest, len(pool)), random_state=777)], ignore_index=True)
return out
def _pairwise_max_abs_diff(means: Dict[str, float]) -> float:
from itertools import combinations
keys = list(means.keys())
if len(keys) < 2:
return 0.0
diffs = [abs(means[a] - means[b]) for a, b in combinations(keys, 2)]
return float(max(diffs)) if diffs else 0.0
def _mean_by_cat(df: pd.DataFrame, cats: List[str], score_col: str = "sentiment_score") -> Dict[str, float]:
out: Dict[str, float] = {}
for c in cats:
sub = df[df["category"] == c]
if len(sub) > 0:
out[c] = float(sub[score_col].mean())
return out
@app.route('/pipeline', methods=['POST'])
def run_pipeline():
"""Run the complete pipeline with frontend JobConfig format"""
data = request.get_json() or {}
config = data.get('config', data) or {}
print("[DEBUG] Received config:", config)
dataset_id = config.get('dataset') or "AmazonScience/bold"
model_name = config.get('languageModel', 'openai-community/gpt2')
top_k = int(config.get('k', 5))
dataset_limit_raw = config.get('datasetLimit')
dataset_limit = int(dataset_limit_raw) if dataset_limit_raw is not None else None
num_cf_per_row = int(config.get('numCounterfactuals') or 3)
tau = float(config.get('tau', 0.1))
iterations = int(config.get('iterations', 1000))
metric_target = config.get('metrictarget')
try:
results = {}
global _CURRENT_DATASET, _GENERATION_RESULTS
print("Pipeline Step 1: Loading data...")
ds = load_dataset(dataset_id, split="train")
df_full = pd.DataFrame(ds)[["domain", "name", "category", "prompts", "wikipedia"]].copy()
selected_groups = _parse_selected_groups_from_config(config)
present_all = sorted(df_full["category"].dropna().unique().tolist())
if selected_groups:
selected_groups = [g for g in selected_groups if g in present_all]
if len(selected_groups) < 2:
print(f"[Filter] Requested groups not enough in dataset (have {selected_groups}); fallback to ALL categories")
selected_groups = []
else:
print("[Filter] No groups requested from frontend; will use categories present after generation.")
df_pool = df_full[df_full["category"].isin(selected_groups)].copy() if selected_groups else df_full.copy()
df = stratified_sample_by_category(
df=df_pool,
category_col="category",
groups=selected_groups if selected_groups else sorted(df_pool["category"].unique().tolist()),
total_n=dataset_limit
)
print(f"[Pool] pool_size={len(df_pool)}, sampled={len(df)}")
print(f"[Pool] categories in pool: {sorted(df_pool['category'].unique().tolist())}")
print(f"[Pool] categories in sample: {sorted(df['category'].unique().tolist())}")
_CURRENT_DATASET = df
results['data_loaded'] = len(df)
print(f"Dataset loaded: {len(df)} rows")
print("Pipeline Step 2: Loading model...")
tokenizer, model, device = get_model(model_name)
results['model_loaded'] = model_name
print(f"Pipeline Step 3: Generating samples for {len(df)} entries...")
generation_results = generate_topk_samples(model, _CURRENT_DATASET, tokenizer, device, top_k=top_k)
task = config.get('classificationTask', 'sentiment')
tox_choice = config.get('toxicityModelChoice', 'detoxify')
evaluated_results = evaluate_generated_outputs(
generation_results, device,
task=task,
toxicity_model_choice=tox_choice
)
_GENERATION_RESULTS = evaluated_results
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
os.makedirs("/tmp", exist_ok=True)
output_file = f"/tmp/pipeline_generation_{timestamp}.csv"
evaluated_results.to_csv(output_file, index=False)
results['generation_file'] = output_file
results['generation_samples'] = len(evaluated_results)
print("Pipeline Step 3.5: Counterfactual augmentation...")
augmented_results = generate_counterfactual_augmentations(
evaluated_results,
text_col="generated",
name_col="name",
category_col="category",
num_cf_per_row=num_cf_per_row
)
augmented_file = f"/tmp/pipeline_generation_cf_augmented_{timestamp}.csv"
augmented_results.to_csv(augmented_file, index=False)
results['counterfactual_file'] = augmented_file
results['counterfactual_added'] = len(augmented_results) - len(evaluated_results)
results['counterfactual_total'] = len(augmented_results)
present_after_gen = sorted(evaluated_results["category"].dropna().unique().tolist())
if not selected_groups:
selected_groups_used = present_after_gen
else:
selected_groups_used = [g for g in selected_groups if g in present_after_gen]
if len(selected_groups_used) < 2:
print(f"[Sampling] After generation only {selected_groups_used} present; expanding to all present categories")
selected_groups_used = present_after_gen
print(f"[Sampling] Using groups: {selected_groups_used}")
print("Debug: Checking data before sampling...")
print(f"Total evaluated results: {len(evaluated_results)}")
print(f"Categories in data: {present_after_gen}")
print(f"Names in data: {evaluated_results['name'].unique()}")
for cat in selected_groups_used:
cat_count = int((evaluated_results["category"] == cat).sum())
print(f"Category '{cat}': {cat_count} samples")
print(f"Pipeline Step 4: Rank sampling on original evaluated results...(iterations={iterations}, temp={tau})")
try:
best_sent_subset = rank_sample(evaluated_results, num_samples=iterations, temp=tau, target_value=metric_target)
except (ValueError, IndexError) as e:
print(f"Sampling failed: {e}")
mid_point = len(evaluated_results) // 2
best_sent_subset = evaluated_results.iloc[:mid_point].copy()
sent_file = f"/tmp/pipeline_sent_subset_{timestamp}.csv"
best_sent_subset.to_csv(sent_file, index=False)
print(f"Pipeline Step 5: Rank sampling on CF-augmented results...(iterations={iterations}, temp={tau})")
try:
cf_best_sent_subset = rank_sample(augmented_results, num_samples=iterations, temp=tau, target_value=metric_target)
except (ValueError, IndexError) as e:
print(f"CF Sampling failed: {e}")
mid_point = len(augmented_results) // 2
cf_best_sent_subset = augmented_results.iloc[:mid_point].copy()
cf_sent_file = f"/tmp/pipeline_cf_sent_subset_{timestamp}.csv"
cf_best_sent_subset.to_csv(cf_sent_file, index=False)
orig_means = _mean_by_cat(best_sent_subset, selected_groups_used)
final_mean_diff = _pairwise_max_abs_diff(orig_means)
cf_means = _mean_by_cat(cf_best_sent_subset, selected_groups_used)
cf_final_mean_diff = _pairwise_max_abs_diff(cf_means)
print("Pipeline Step 6: Plotting distributions...")
def _safe(s: str) -> str:
import re
return re.sub(r"[^A-Za-z0-9_.-]+", "_", s)
orig_sent_title = _safe(f"{timestamp}_original_distribution")
cf_sent_title = _safe(f"{timestamp}_cf_distribution")
score_col = None
for c in [
"sentiment_score", "regard_score", "toxicity_score",
"stereotype_gender_score", "stereotype_religion_score",
"stereotype_profession_score", "stereotype_race_score",
"personality_score",
]:
if c in best_sent_subset.columns:
score_col = c
break
if score_col is None:
raise KeyError(f"No score column found. Available: {list(best_sent_subset.columns)}")
orig_path = _ensure_plot_saved(
best_sent_subset, score_col, orig_sent_title,
group_col="category", target=metric_target
)
cf_path = _ensure_plot_saved(
cf_best_sent_subset, score_col, cf_sent_title,
group_col="category", target=metric_target
)
print("[Plot check exists]", orig_path, os.path.exists(orig_path))
print("[Plot check exists]", cf_path, os.path.exists(cf_path))
results['plots'] = {
'original_sentiment': f"/tmp/{os.path.basename(orig_path)}",
'counterfactual_sentiment': f"/tmp/{os.path.basename(cf_path)}",
}
print("[Plot urls]", results['plots'])
if config.get("enableFineTuning"):
print("Pipeline Step 7: Fine-tuning enabled, starting training...")
ft_cfg = config.get("finetuneParams", {}) or {}
epochs = int(ft_cfg.get("epochs", 3))
batch_size = int(ft_cfg.get("batchSize", 8))
lr = float(ft_cfg.get("learningRate", 5e-5))
input_csv = augmented_file
ft_output_dir = f"/tmp/ft_{timestamp}"
os.makedirs(ft_output_dir, exist_ok=True)
try:
from utils.finetune import finetune_gpt2_from_csv
finetune_gpt2_from_csv(
csv_path=input_csv,
output_dir=ft_output_dir,
epochs=epochs,
batch_size=batch_size,
lr=lr
)
print(f"[Fine-tune] Saved fine-tuned model to {ft_output_dir}")
results["finetuned_model_dir"] = ft_output_dir
zip_base = f"/tmp/ft_{timestamp}"
import shutil
zip_path = shutil.make_archive(zip_base, 'zip', ft_output_dir)
results["finetuned_model_zip"] = f"/tmp/{os.path.basename(zip_path)}"
except Exception as fe:
print(f"[Fine-tune] Failed: {fe}")
results["finetuned_model_error"] = str(fe)
results.update({
'sampling_method': 'rank_sentiment_only',
'used_groups': selected_groups_used,
'sentiment_subset_file': sent_file,
'cf_sentiment_subset_file': cf_sent_file,
'sentiment_subset_size': len(best_sent_subset),
'cf_sentiment_subset_size': len(cf_best_sent_subset),
'config_used': config,
'metrics': {
'finalMeanDiff': final_mean_diff,
'cfFinalMeanDiff': cf_final_mean_diff,
'reductionPct': (0.0 if final_mean_diff == 0 else max(0.0, (final_mean_diff - cf_final_mean_diff) / abs(final_mean_diff) * 100.0)),
'stableCoverage': 100.0
}
})
return jsonify({
"status": "success",
"message": "Complete pipeline executed successfully (with counterfactual augmentation)",
"results": results,
"timestamp": timestamp
})
except Exception as e:
print(f"Error in pipeline: {str(e)}")
return jsonify({
"status": "error",
"message": f"Pipeline failed: {str(e)}"
}), 500
if __name__ == '__main__':
os.makedirs("/tmp", exist_ok=True)
print("Starting minimal Flask server...")
print("Available endpoints:")
print(" GET /health - Health check")
print(" GET /dataset/fields?id=<hf_id>[&config=...][&split=...] - List dataset fields")
print(" GET /dataset/field-stats?id=...&field=... - Get value distribution of a field")
print(" GET /dataset/meta?id=<hf_id> - List configs/splits")
print(" POST /pipeline - Run complete pipeline")
app.run(host='0.0.0.0', port=5001, debug=True, threaded=True)
|