File size: 6,860 Bytes
9297977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5a84d4
 
9297977
 
 
 
a5a84d4
9297977
a5a84d4
9297977
 
 
 
a5a84d4
9297977
 
 
 
a5a84d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9297977
 
a5a84d4
 
 
9297977
 
 
 
 
 
 
 
a5a84d4
9297977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
import spaces
import pandas as pd
import torch
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers import AutoModelForCausalLM
import time
import plotly.graph_objects as go
from datetime import datetime
from deep_translator import GoogleTranslator
from googletrans import Translator as LegacyTranslator
import io
from openpyxl import load_workbook
from openpyxl.utils.dataframe import dataframe_to_rows

class EventDetector:
    def __init__(self):
        self.model_name = "google/mt5-small"
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model = self.model.to(self.device)
        
        # Initialize sentiment analyzers
        self.finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert", device=self.device)
        self.roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment", device=self.device)
        self.finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone", device=self.device)

    @spaces.GPU(duration=120)
    def detect_events(self, text, entity):
        if not text or not entity:
            return "Нет", "Invalid input"
            
        try:
            prompt = f"""<s>Analyze the following news about {entity}:
            Text: {text}
            Task: Identify the main event type and provide a brief summary.</s>"""
            
            inputs = self.tokenizer(prompt, return_tensors="pt", padding=True, 
                                  truncation=True, max_length=512).to(self.device)
            
            outputs = self.model.generate(**inputs, max_length=300, num_return_sequences=1)
            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Event type classification logic
            event_type = "Нет"
            if any(term in text.lower() for term in ['отчет', 'выручка', 'прибыль', 'ebitda']):
                event_type = "Отчетность"
            elif any(term in text.lower() for term in ['облигаци', 'купон', 'дефолт']):
                event_type = "РЦБ"
            elif any(term in text.lower() for term in ['суд', 'иск', 'арбитраж']):
                event_type = "Суд"
                
            return event_type, response
            
        except Exception as e:
            return "Нет", f"Error: {str(e)}"

    @spaces.GPU(duration=60)
    def analyze_sentiment(self, text):
        try:
            results = []
            results.append(self._get_sentiment(self.finbert(text)[0]))
            results.append(self._get_sentiment(self.roberta(text)[0]))
            results.append(self._get_sentiment(self.finbert_tone(text)[0]))
            
            # Return majority sentiment
            sentiment_counts = pd.Series(results).value_counts()
            return sentiment_counts.index[0] if sentiment_counts.iloc[0] >= 2 else "Neutral"
            
        except Exception as e:
            return "Neutral"

    def _get_sentiment(self, result):
        label = result['label'].lower()
        if label in ["positive", "label_2", "pos"]:
            return "Positive"
        elif label in ["negative", "label_0", "neg"]:
            return "Negative"
        return "Neutral"

def process_file(file):
    try:
        df = pd.read_excel(file.name)
        detector = EventDetector()
        processed_rows = []
        
        for _, row in df.iterrows():
            text = str(row.get('Выдержки из текста', ''))
            entity = str(row.get('Объект', ''))
            
            event_type, event_summary = detector.detect_events(text, entity)
            sentiment = detector.analyze_sentiment(text)
            
            processed_rows.append({
                'Объект': entity,
                'Заголовок': str(row.get('Заголовок', '')),
                'Sentiment': sentiment,
                'Event_Type': event_type,
                'Event_Summary': event_summary,
                'Текст': text
            })
            
        return pd.DataFrame(processed_rows)
        
    except Exception as e:
        # Return empty DataFrame instead of string
        return pd.DataFrame(columns=['Объект', 'Заголовок', 'Sentiment', 'Event_Type', 'Event_Summary', 'Текст'])

def analyze(file):
    if file is None:
        return None, None, None
        
    df = process_file(file)
    if df.empty:
        return df, None, None
        
    try:
        fig_sentiment, fig_events = create_visualizations(df)
        return df, fig_sentiment, fig_events
    except Exception as e:
        return df, None, None

def create_visualizations(df):
    if df is None or df.empty:
        return None, None
        
    # Create sentiment distribution plot
    sentiments = df['Sentiment'].value_counts()
    fig_sentiment = go.Figure(data=[go.Pie(
        labels=sentiments.index,
        values=sentiments.values,
        marker_colors=['#FF6B6B', '#4ECDC4', '#95A5A6']
    )])
    
    # Create events distribution plot  
    events = df['Event_Type'].value_counts()
    fig_events = go.Figure(data=[go.Bar(
        x=events.index,
        y=events.values,
        marker_color='#2196F3'
    )])
    
    return fig_sentiment, fig_events

def create_interface():
    with gr.Blocks() as app:
        gr.Markdown("# AI-анализ мониторинга новостей")
        
        with gr.Row():
            file_input = gr.File(label="Загрузите Excel файл")
        
        with gr.Row():
            analyze_btn = gr.Button("Начать анализ")
        
        with gr.Row():
            with gr.Column():
                stats = gr.DataFrame(label="Результаты анализа")
            
        with gr.Row():
            with gr.Column():
                sentiment_plot = gr.Plot(label="Распределение тональности")
            with gr.Column():
                events_plot = gr.Plot(label="Распределение событий")
                
        def analyze(file):
            if file is None:
                return None, None, None
                
            df = process_file(file)
            fig_sentiment, fig_events = create_visualizations(df)
            
            return df, fig_sentiment, fig_events
            
        analyze_btn.click(
            analyze,
            inputs=[file_input],
            outputs=[stats, sentiment_plot, events_plot]
        )
        
    return app

if __name__ == "__main__":
    app = create_interface()
    app.launch()