Spaces:
Sleeping
Sleeping
Commit
·
229101e
1
Parent(s):
cb83206
progress more (back to 3.17)
Browse files
app.py
CHANGED
|
@@ -266,6 +266,10 @@ def generate_sentiment_visualization(df):
|
|
| 266 |
return fig
|
| 267 |
|
| 268 |
def process_file(uploaded_file, model_choice):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
try:
|
| 270 |
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
|
| 271 |
llm = init_langchain_llm(model_choice)
|
|
@@ -275,6 +279,12 @@ def process_file(uploaded_file, model_choice):
|
|
| 275 |
st.error(f"Error: The following required columns are missing from the input file: {', '.join(missing_columns)}")
|
| 276 |
st.stop()
|
| 277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
# Deduplication
|
| 279 |
original_news_count = len(df)
|
| 280 |
df = df.groupby('Объект', group_keys=False).apply(
|
|
@@ -317,9 +327,33 @@ def process_file(uploaded_file, model_choice):
|
|
| 317 |
impact if sentiment == "Negative" else None,
|
| 318 |
reasoning if sentiment == "Negative" else None)
|
| 319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
return df
|
| 321 |
|
| 322 |
except Exception as e:
|
|
|
|
| 323 |
st.error(f"❌ Ошибка при обработке файла: {str(e)}")
|
| 324 |
raise e
|
| 325 |
|
|
@@ -423,16 +457,34 @@ def create_output_file(df, uploaded_file, llm):
|
|
| 423 |
|
| 424 |
def main():
|
| 425 |
with st.sidebar:
|
| 426 |
-
st.title("::: AI-анализ мониторинга новостей (v.3.
|
| 427 |
st.subheader("по материалам СКАН-ИНТЕРФАКС ")
|
| 428 |
|
| 429 |
-
# Model selection at the top level
|
| 430 |
model_choice = st.radio(
|
| 431 |
"Выберите модель для анализа:",
|
| 432 |
["Groq (llama-3.1-70b)", "ChatGPT-4-mini", "NVIDIA Nemotron-70B"],
|
| 433 |
key="model_selector"
|
| 434 |
)
|
| 435 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
st.markdown(
|
| 437 |
"""
|
| 438 |
<style>
|
|
@@ -451,35 +503,22 @@ def main():
|
|
| 451 |
unsafe_allow_html=True
|
| 452 |
)
|
| 453 |
|
| 454 |
-
|
| 455 |
-
st.markdown(
|
| 456 |
-
"""
|
| 457 |
-
Использованы технологии:
|
| 458 |
-
- Анализ естественного языка с помощью предтренированных нейросетей **BERT**,<br/>
|
| 459 |
-
- Дополнительная обработка при помощи больших языковых моделей (**LLM**),<br/>
|
| 460 |
-
- объединенные при помощи фреймворка **LangChain**.<br>
|
| 461 |
-
""",
|
| 462 |
-
unsafe_allow_html=True)
|
| 463 |
-
|
| 464 |
-
with st.expander("ℹ️ Инструкция"):
|
| 465 |
-
st.markdown("""
|
| 466 |
-
1. Выберите модель для анализа
|
| 467 |
-
2. Загрузите Excel файл с новостями <br/>
|
| 468 |
-
3. Дождитесь завершения анализа <br/>
|
| 469 |
-
4. Скачайте результаты анализа в формате Excel <br/>
|
| 470 |
-
""", unsafe_allow_html=True)
|
| 471 |
-
|
| 472 |
st.title("Анализ мониторинга новостей")
|
| 473 |
|
| 474 |
if 'processed_df' not in st.session_state:
|
| 475 |
st.session_state.processed_df = None
|
| 476 |
|
|
|
|
| 477 |
uploaded_file = st.sidebar.file_uploader("Выбирайте Excel-файл", type="xlsx", key="unique_file_uploader")
|
| 478 |
|
| 479 |
if uploaded_file is not None and st.session_state.processed_df is None:
|
| 480 |
start_time = time.time()
|
| 481 |
|
| 482 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 483 |
st.session_state.processed_df = process_file(uploaded_file, model_choice)
|
| 484 |
|
| 485 |
st.subheader("Предпросмотр данных")
|
|
@@ -490,7 +529,7 @@ def main():
|
|
| 490 |
st.subheader("Анализ")
|
| 491 |
st.dataframe(analysis_df)
|
| 492 |
|
| 493 |
-
|
| 494 |
output = create_output_file(st.session_state.processed_df, uploaded_file, llm)
|
| 495 |
|
| 496 |
end_time = time.time()
|
|
|
|
| 266 |
return fig
|
| 267 |
|
| 268 |
def process_file(uploaded_file, model_choice):
|
| 269 |
+
#output_capture = StreamlitCapture()
|
| 270 |
+
old_stdout = sys.stdout
|
| 271 |
+
#sys.stdout = output_capture
|
| 272 |
+
|
| 273 |
try:
|
| 274 |
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
|
| 275 |
llm = init_langchain_llm(model_choice)
|
|
|
|
| 279 |
st.error(f"Error: The following required columns are missing from the input file: {', '.join(missing_columns)}")
|
| 280 |
st.stop()
|
| 281 |
|
| 282 |
+
# Initialize LLM
|
| 283 |
+
llm = init_langchain_llm(model_choice)
|
| 284 |
+
if not llm:
|
| 285 |
+
st.error("Не удалось инициализировать нейросеть. Пожалуйста, проверьте настройки и попробуйте снова.")
|
| 286 |
+
st.stop()
|
| 287 |
+
|
| 288 |
# Deduplication
|
| 289 |
original_news_count = len(df)
|
| 290 |
df = df.groupby('Объект', group_keys=False).apply(
|
|
|
|
| 327 |
impact if sentiment == "Negative" else None,
|
| 328 |
reasoning if sentiment == "Negative" else None)
|
| 329 |
|
| 330 |
+
|
| 331 |
+
# Generate all output files
|
| 332 |
+
st.write("Генерация отчета...")
|
| 333 |
+
|
| 334 |
+
# 1. Generate Excel
|
| 335 |
+
excel_output = create_output_file(df, uploaded_file, llm)
|
| 336 |
+
|
| 337 |
+
# 2. Generate PDF
|
| 338 |
+
#st.write("Создание PDF протокола...")
|
| 339 |
+
#pdf_data = generate_pdf_report(output_capture.texts)
|
| 340 |
+
|
| 341 |
+
# Save PDF to disk
|
| 342 |
+
#if pdf_data:
|
| 343 |
+
# with open("result.pdf", "wb") as f:
|
| 344 |
+
# f.write(pdf_data)
|
| 345 |
+
# st.success("PDF протокол сохранен как 'result.pdf'")
|
| 346 |
+
|
| 347 |
+
# Show success message
|
| 348 |
+
#st.success(f"✅ Обработка и анализ завершены за умеренное время.")
|
| 349 |
+
|
| 350 |
+
# Create download section
|
| 351 |
+
create_download_section(excel_output,"")
|
| 352 |
+
|
| 353 |
return df
|
| 354 |
|
| 355 |
except Exception as e:
|
| 356 |
+
sys.stdout = old_stdout
|
| 357 |
st.error(f"❌ Ошибка при обработке файла: {str(e)}")
|
| 358 |
raise e
|
| 359 |
|
|
|
|
| 457 |
|
| 458 |
def main():
|
| 459 |
with st.sidebar:
|
| 460 |
+
st.title("::: AI-анализ мониторинга новостей (v.3.17):::")
|
| 461 |
st.subheader("по материалам СКАН-ИНТЕРФАКС ")
|
| 462 |
|
|
|
|
| 463 |
model_choice = st.radio(
|
| 464 |
"Выберите модель для анализа:",
|
| 465 |
["Groq (llama-3.1-70b)", "ChatGPT-4-mini", "NVIDIA Nemotron-70B"],
|
| 466 |
key="model_selector"
|
| 467 |
)
|
| 468 |
|
| 469 |
+
st.markdown(
|
| 470 |
+
"""
|
| 471 |
+
Использованы технологии:
|
| 472 |
+
- Анализ естественного языка с помощью предтренированных нейросетей **BERT**,<br/>
|
| 473 |
+
- Дополнительная обработка при помощи больших языковых моделей (**LLM**),<br/>
|
| 474 |
+
- объединенные при помощи фреймворка **LangChain**.<br>
|
| 475 |
+
""",
|
| 476 |
+
unsafe_allow_html=True)
|
| 477 |
+
|
| 478 |
+
# Model selection is now handled in init_langchain_llm()
|
| 479 |
+
|
| 480 |
+
with st.expander("ℹ️ Инструкция"):
|
| 481 |
+
st.markdown("""
|
| 482 |
+
1. Выберите модель для анализа
|
| 483 |
+
2. Загрузите Excel файл с новостями <br/>
|
| 484 |
+
3. Дождитесь завершения анализа <br/>
|
| 485 |
+
4. Скачайте результаты анализа в формате Excel <br/>
|
| 486 |
+
""", unsafe_allow_html=True)
|
| 487 |
+
|
| 488 |
st.markdown(
|
| 489 |
"""
|
| 490 |
<style>
|
|
|
|
| 503 |
unsafe_allow_html=True
|
| 504 |
)
|
| 505 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
st.title("Анализ мониторинга новостей")
|
| 507 |
|
| 508 |
if 'processed_df' not in st.session_state:
|
| 509 |
st.session_state.processed_df = None
|
| 510 |
|
| 511 |
+
# Single file uploader with unique key
|
| 512 |
uploaded_file = st.sidebar.file_uploader("Выбирайте Excel-файл", type="xlsx", key="unique_file_uploader")
|
| 513 |
|
| 514 |
if uploaded_file is not None and st.session_state.processed_df is None:
|
| 515 |
start_time = time.time()
|
| 516 |
|
| 517 |
+
|
| 518 |
+
# Initialize LLM with selected model
|
| 519 |
+
llm = init_langchain_llm(model_choice)
|
| 520 |
+
|
| 521 |
+
|
| 522 |
st.session_state.processed_df = process_file(uploaded_file, model_choice)
|
| 523 |
|
| 524 |
st.subheader("Предпросмотр данных")
|
|
|
|
| 529 |
st.subheader("Анализ")
|
| 530 |
st.dataframe(analysis_df)
|
| 531 |
|
| 532 |
+
|
| 533 |
output = create_output_file(st.session_state.processed_df, uploaded_file, llm)
|
| 534 |
|
| 535 |
end_time = time.time()
|