File size: 10,720 Bytes
8ba64a4
 
 
 
 
56a2c3e
8ba64a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a2c3e
 
 
8ba64a4
 
56a2c3e
8ba64a4
 
 
 
 
 
 
 
56a2c3e
 
 
 
 
8ba64a4
 
 
 
 
 
 
 
56a2c3e
 
 
8ba64a4
 
56a2c3e
8ba64a4
 
 
 
 
56a2c3e
 
 
 
 
 
 
8ba64a4
56a2c3e
 
 
 
8ba64a4
56a2c3e
8ba64a4
56a2c3e
8ba64a4
56a2c3e
8ba64a4
 
 
 
 
56a2c3e
8ba64a4
56a2c3e
0e18f46
 
8ba64a4
 
 
 
56a2c3e
8ba64a4
 
 
 
 
967d1e6
8ba64a4
 
56a2c3e
8ba64a4
 
 
56a2c3e
 
8ba64a4
 
 
 
 
 
 
 
 
b083fdc
8ba64a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a2c3e
8ba64a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a2c3e
 
 
 
ca939d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os

os.environ["HUGGINGFACE_DEMO"] = "1"  # set before import from app

from dotenv import load_dotenv

load_dotenv()
################################################################################################

import gradio as gr
import uuid
import shutil

from app.config import get_settings
from app.schemas.requests import Attribute
from app.request_handler import handle_extract
from app.services.factory import AIServiceFactory


settings = get_settings()
IMAGE_MAX_SIZE = 1536


async def forward_request(
    attributes, product_taxonomy, product_data, ai_model, pil_images
):
    # prepare temp folder
    request_id = str(uuid.uuid4())
    request_temp_folder = os.path.join("gradio_temp", request_id)
    os.makedirs(request_temp_folder, exist_ok=True)

    try:
        # convert attributes to schema
        attributes = "attributes_object = {" + attributes + "}"
        try:
            attributes = exec(attributes, globals())
        except:
            raise gr.Error(
                "Invalid `Attribute Schema`. Please insert valid schema following the example."
            )
        for key, value in attributes_object.items():  # type: ignore
            attributes_object[key] = Attribute(**value)  # type: ignore

        if product_data == "":
            product_data = "{}"
        product_data_code = f"product_data_object = {product_data}"

        try:
            exec(product_data_code, globals())
        except:
            raise gr.Error(
                "Invalid `Product Data`. Please insert valid dictionary or leave it empty."
            )

        if pil_images is None:
            raise gr.Error("Please upload image(s) of the product")
        pil_images = [pil_image[0] for pil_image in pil_images]
        img_paths = []
        for i, pil_image in enumerate(pil_images):
            if max(pil_image.size) > IMAGE_MAX_SIZE:
                ratio = IMAGE_MAX_SIZE / max(pil_image.size)
                pil_image = pil_image.resize(
                    (int(pil_image.width * ratio), int(pil_image.height * ratio))
                )
            img_path = os.path.join(request_temp_folder, f"{i}.jpg")
            if pil_image.mode in ("RGBA", "LA") or (
                pil_image.mode == "P" and "transparency" in pil_image.info
            ):
                pil_image = pil_image.convert("RGBA")
                if pil_image.getchannel("A").getextrema() == (
                    255,
                    255,
                ):  # if fully opaque, save as JPEG
                    pil_image = pil_image.convert("RGB")
                    image_format = "JPEG"
                else:
                    image_format = "PNG"
            else:
                image_format = "JPEG"
            pil_image.save(img_path, image_format, quality=100, subsampling=0)
            img_paths.append(img_path)

        # mapping
        if ai_model in settings.OPENAI_MODELS:
            ai_vendor = "openai"
        elif ai_model in settings.ANTHROPIC_MODELS:
            ai_vendor = "anthropic"
        elif ai_model in settings.GEMINI_MODELS:
            ai_vendor = "gemini"
        service = AIServiceFactory.get_service(ai_vendor)

        try:
            json_attributes = await service.extract_attributes_with_validation(
                attributes_object,  # type: ignore
                ai_model,
                None,
                product_taxonomy,
                product_data_object,  # type: ignore
                img_paths=img_paths,

            )
        except:
            raise gr.Error("Failed to extract attributes. Something went wrong.")
    finally:
        # remove temp folder anyway
        shutil.rmtree(request_temp_folder)

    gr.Info("Process completed!")
    return json_attributes


def add_attribute_schema(attributes, attr_name, attr_desc, attr_type, allowed_values):
    schema = f"""
"{attr_name}": {{
    "description": "{attr_desc}",
    "data_type": "{attr_type}",
    "allowed_values": [
        {', '.join([f'"{v.strip()}"' for v in allowed_values.split(',')]) if allowed_values != "" else ""}
    ]
}},
"""
    return attributes + schema, "", "", "", ""


sample_schema = """"category": {
    "description": "Category of the garment",
    "data_type": "list[string]",
    "allowed_values": [
        "upper garment", "lower garment", "footwear", "accessory", "headwear", "dresses"
    ]
},

"color": {
    "description": "Color of the garment",
    "data_type": "list[string]",
    "allowed_values": [
        "black", "white", "red", "blue", "green", "yellow", "pink", "purple", "orange", "brown", "grey", "beige", "multi-color", "other"
    ]
},

"pattern": {
    "description": "Pattern of the garment",
    "data_type": "list[string]",
    "allowed_values": [
        "plain", "striped", "checkered", "floral", "polka dot", "camouflage", "animal print", "abstract", "other"
    ]
}, 

"material": {
    "description": "Material of the garment",
    "data_type": "string",
    "allowed_values": []
}
"""
description = """
This is a simple demo for Attribution. Follow the steps below:

1. Upload image(s) of a product.
2. Enter the product taxonomy (e.g. 'upper garment', 'lower garment', 'bag'). If only one product is in the image, you can leave this field empty.
3. Select the AI model to use.
4. Enter known attributes (optional).
5. Enter the attribute schema or use the "Add Attributes" section to add attributes.
6. Click "Extract Attributes" to get the extracted attributes.
"""

product_data_placeholder = """Example:
{
    "brand": "Leaf",
    "size": "M",
    "product_name": "Leaf T-shirt",
    "color": "red"
}
"""
product_data_value = """
{
    "data1": "",
    "data2": ""
}
"""

with gr.Blocks(title="Internal Demo for Attribution") as demo:
    with gr.Row():
        with gr.Column(scale=12):
            gr.Markdown(
                """<div style="text-align: center; font-size: 24px;"><strong>Internal Demo for Attribution</strong></div>"""
            )
            gr.Markdown(description)

    with gr.Row():
        with gr.Column(scale=12):
            with gr.Row():
                with gr.Column():
                    gallery = gr.Gallery(
                        label="Upload images of your product here", type="pil"
                    )
                    product_taxnomy = gr.Textbox(
                        label="Product Taxonomy",
                        placeholder="Enter product taxonomy here (e.g. 'upper garment', 'lower garment', 'bag')",
                        lines=1,
                        max_lines=1,
                    )
                    ai_model = gr.Dropdown(
                        label="AI Model",
                        choices=settings.SUPPORTED_MODELS,
                        interactive=True,
                    )
                    product_data = gr.TextArea(
                        label="Product Data (Optional)",
                        placeholder=product_data_placeholder,
                        value=product_data_value.strip(),
                        interactive=True,
                        lines=10,
                        max_lines=10,
                    )

                    # track_count = gr.State(1)
                    # @gr.render(inputs=track_count)
                    # def render_tracks(count):
                    #     ka_names = []
                    #     ka_values = []
                    #     with gr.Column():
                    #         for i in range(count):
                    #             with gr.Column(variant="panel"):
                    #                 with gr.Row():
                    #                     ka_name = gr.Textbox(placeholder="key", key=f"key-{i}", show_label=False)
                    #                     ka_value = gr.Textbox(placeholder="data", key=f"data-{i}", show_label=False)
                    #                     ka_names.append(ka_name)
                    #                     ka_values.append(ka_value)

                    # add_track_btn = gr.Button("Add Product Data")
                    # remove_track_btn = gr.Button("Remove Product Data")
                    # add_track_btn.click(lambda count: count + 1, track_count, track_count)
                    # remove_track_btn.click(lambda count: count - 1, track_count, track_count)

                with gr.Column():
                    attributes = gr.TextArea(
                        label="Attribute Schema",
                        value=sample_schema,
                        placeholder="Enter schema here or use Add Attributes below",
                        interactive=True,
                        lines=30,
                        max_lines=30,
                    )

                    with gr.Accordion("Add Attributes", open=False):
                        attr_name = gr.Textbox(
                            label="Attribute name", placeholder="Enter attribute name"
                        )
                        attr_desc = gr.Textbox(
                            label="Description", placeholder="Enter description"
                        )
                        attr_type = gr.Dropdown(
                            label="Type",
                            choices=[
                                "string",
                                "list[string]",
                                "int",
                                "list[int]",
                                "float",
                                "list[float]",
                                "bool",
                                "list[bool]",
                            ],
                            interactive=True,
                        )
                        allowed_values = gr.Textbox(
                            label="Allowed values (separated by comma)",
                            placeholder="yellow, red, blue",
                        )
                        add_btn = gr.Button("Add Attribute")

            with gr.Row():
                submit_btn = gr.Button("Extract Attributes")

        with gr.Column(scale=6):
            output_json = gr.Json(
                label="Extracted Attributes", value={}, show_indices=False
            )

    add_btn.click(
        add_attribute_schema,
        inputs=[attributes, attr_name, attr_desc, attr_type, allowed_values],
        outputs=[attributes, attr_name, attr_desc, attr_type, allowed_values],
    )

    submit_btn.click(
        forward_request,
        inputs=[attributes, product_taxnomy, product_data, ai_model, gallery],
        outputs=output_json,
    )


attr_user = os.getenv("ATTR_USER", "1")
attr_pass = os.getenv("ATTR_PASS", "a")
auth = (attr_user, attr_pass)
demo.launch(auth=auth, debug=True, ssr_mode=False)