Spaces:
Sleeping
Sleeping
File size: 10,720 Bytes
8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 56a2c3e 0e18f46 8ba64a4 56a2c3e 8ba64a4 967d1e6 8ba64a4 56a2c3e 8ba64a4 56a2c3e 8ba64a4 b083fdc 8ba64a4 56a2c3e 8ba64a4 56a2c3e ca939d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
os.environ["HUGGINGFACE_DEMO"] = "1" # set before import from app
from dotenv import load_dotenv
load_dotenv()
################################################################################################
import gradio as gr
import uuid
import shutil
from app.config import get_settings
from app.schemas.requests import Attribute
from app.request_handler import handle_extract
from app.services.factory import AIServiceFactory
settings = get_settings()
IMAGE_MAX_SIZE = 1536
async def forward_request(
attributes, product_taxonomy, product_data, ai_model, pil_images
):
# prepare temp folder
request_id = str(uuid.uuid4())
request_temp_folder = os.path.join("gradio_temp", request_id)
os.makedirs(request_temp_folder, exist_ok=True)
try:
# convert attributes to schema
attributes = "attributes_object = {" + attributes + "}"
try:
attributes = exec(attributes, globals())
except:
raise gr.Error(
"Invalid `Attribute Schema`. Please insert valid schema following the example."
)
for key, value in attributes_object.items(): # type: ignore
attributes_object[key] = Attribute(**value) # type: ignore
if product_data == "":
product_data = "{}"
product_data_code = f"product_data_object = {product_data}"
try:
exec(product_data_code, globals())
except:
raise gr.Error(
"Invalid `Product Data`. Please insert valid dictionary or leave it empty."
)
if pil_images is None:
raise gr.Error("Please upload image(s) of the product")
pil_images = [pil_image[0] for pil_image in pil_images]
img_paths = []
for i, pil_image in enumerate(pil_images):
if max(pil_image.size) > IMAGE_MAX_SIZE:
ratio = IMAGE_MAX_SIZE / max(pil_image.size)
pil_image = pil_image.resize(
(int(pil_image.width * ratio), int(pil_image.height * ratio))
)
img_path = os.path.join(request_temp_folder, f"{i}.jpg")
if pil_image.mode in ("RGBA", "LA") or (
pil_image.mode == "P" and "transparency" in pil_image.info
):
pil_image = pil_image.convert("RGBA")
if pil_image.getchannel("A").getextrema() == (
255,
255,
): # if fully opaque, save as JPEG
pil_image = pil_image.convert("RGB")
image_format = "JPEG"
else:
image_format = "PNG"
else:
image_format = "JPEG"
pil_image.save(img_path, image_format, quality=100, subsampling=0)
img_paths.append(img_path)
# mapping
if ai_model in settings.OPENAI_MODELS:
ai_vendor = "openai"
elif ai_model in settings.ANTHROPIC_MODELS:
ai_vendor = "anthropic"
elif ai_model in settings.GEMINI_MODELS:
ai_vendor = "gemini"
service = AIServiceFactory.get_service(ai_vendor)
try:
json_attributes = await service.extract_attributes_with_validation(
attributes_object, # type: ignore
ai_model,
None,
product_taxonomy,
product_data_object, # type: ignore
img_paths=img_paths,
)
except:
raise gr.Error("Failed to extract attributes. Something went wrong.")
finally:
# remove temp folder anyway
shutil.rmtree(request_temp_folder)
gr.Info("Process completed!")
return json_attributes
def add_attribute_schema(attributes, attr_name, attr_desc, attr_type, allowed_values):
schema = f"""
"{attr_name}": {{
"description": "{attr_desc}",
"data_type": "{attr_type}",
"allowed_values": [
{', '.join([f'"{v.strip()}"' for v in allowed_values.split(',')]) if allowed_values != "" else ""}
]
}},
"""
return attributes + schema, "", "", "", ""
sample_schema = """"category": {
"description": "Category of the garment",
"data_type": "list[string]",
"allowed_values": [
"upper garment", "lower garment", "footwear", "accessory", "headwear", "dresses"
]
},
"color": {
"description": "Color of the garment",
"data_type": "list[string]",
"allowed_values": [
"black", "white", "red", "blue", "green", "yellow", "pink", "purple", "orange", "brown", "grey", "beige", "multi-color", "other"
]
},
"pattern": {
"description": "Pattern of the garment",
"data_type": "list[string]",
"allowed_values": [
"plain", "striped", "checkered", "floral", "polka dot", "camouflage", "animal print", "abstract", "other"
]
},
"material": {
"description": "Material of the garment",
"data_type": "string",
"allowed_values": []
}
"""
description = """
This is a simple demo for Attribution. Follow the steps below:
1. Upload image(s) of a product.
2. Enter the product taxonomy (e.g. 'upper garment', 'lower garment', 'bag'). If only one product is in the image, you can leave this field empty.
3. Select the AI model to use.
4. Enter known attributes (optional).
5. Enter the attribute schema or use the "Add Attributes" section to add attributes.
6. Click "Extract Attributes" to get the extracted attributes.
"""
product_data_placeholder = """Example:
{
"brand": "Leaf",
"size": "M",
"product_name": "Leaf T-shirt",
"color": "red"
}
"""
product_data_value = """
{
"data1": "",
"data2": ""
}
"""
with gr.Blocks(title="Internal Demo for Attribution") as demo:
with gr.Row():
with gr.Column(scale=12):
gr.Markdown(
"""<div style="text-align: center; font-size: 24px;"><strong>Internal Demo for Attribution</strong></div>"""
)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=12):
with gr.Row():
with gr.Column():
gallery = gr.Gallery(
label="Upload images of your product here", type="pil"
)
product_taxnomy = gr.Textbox(
label="Product Taxonomy",
placeholder="Enter product taxonomy here (e.g. 'upper garment', 'lower garment', 'bag')",
lines=1,
max_lines=1,
)
ai_model = gr.Dropdown(
label="AI Model",
choices=settings.SUPPORTED_MODELS,
interactive=True,
)
product_data = gr.TextArea(
label="Product Data (Optional)",
placeholder=product_data_placeholder,
value=product_data_value.strip(),
interactive=True,
lines=10,
max_lines=10,
)
# track_count = gr.State(1)
# @gr.render(inputs=track_count)
# def render_tracks(count):
# ka_names = []
# ka_values = []
# with gr.Column():
# for i in range(count):
# with gr.Column(variant="panel"):
# with gr.Row():
# ka_name = gr.Textbox(placeholder="key", key=f"key-{i}", show_label=False)
# ka_value = gr.Textbox(placeholder="data", key=f"data-{i}", show_label=False)
# ka_names.append(ka_name)
# ka_values.append(ka_value)
# add_track_btn = gr.Button("Add Product Data")
# remove_track_btn = gr.Button("Remove Product Data")
# add_track_btn.click(lambda count: count + 1, track_count, track_count)
# remove_track_btn.click(lambda count: count - 1, track_count, track_count)
with gr.Column():
attributes = gr.TextArea(
label="Attribute Schema",
value=sample_schema,
placeholder="Enter schema here or use Add Attributes below",
interactive=True,
lines=30,
max_lines=30,
)
with gr.Accordion("Add Attributes", open=False):
attr_name = gr.Textbox(
label="Attribute name", placeholder="Enter attribute name"
)
attr_desc = gr.Textbox(
label="Description", placeholder="Enter description"
)
attr_type = gr.Dropdown(
label="Type",
choices=[
"string",
"list[string]",
"int",
"list[int]",
"float",
"list[float]",
"bool",
"list[bool]",
],
interactive=True,
)
allowed_values = gr.Textbox(
label="Allowed values (separated by comma)",
placeholder="yellow, red, blue",
)
add_btn = gr.Button("Add Attribute")
with gr.Row():
submit_btn = gr.Button("Extract Attributes")
with gr.Column(scale=6):
output_json = gr.Json(
label="Extracted Attributes", value={}, show_indices=False
)
add_btn.click(
add_attribute_schema,
inputs=[attributes, attr_name, attr_desc, attr_type, allowed_values],
outputs=[attributes, attr_name, attr_desc, attr_type, allowed_values],
)
submit_btn.click(
forward_request,
inputs=[attributes, product_taxnomy, product_data, ai_model, gallery],
outputs=output_json,
)
attr_user = os.getenv("ATTR_USER", "1")
attr_pass = os.getenv("ATTR_PASS", "a")
auth = (attr_user, attr_pass)
demo.launch(auth=auth, debug=True, ssr_mode=False)
|