attributionapi / app /services /service_anthropic.py
chips
Remove WB for now
b02de59
import json
import os
from typing import Any, Dict, List, Type, Union
import anthropic
import weave
from anthropic import APIStatusError, AsyncAnthropic
from pydantic import BaseModel
from app.config import get_settings
from app.core import errors
from app.core.errors import BadRequestError, VendorError
from app.core.prompts import get_prompts
from app.services.base import BaseAttributionService
from app.utils.converter import product_data_to_str
from app.utils.image_processing import get_data_format, get_image_data
from app.utils.logger import exception_to_str, setup_logger
ENV = os.getenv("ENV", "LOCAL")
if ENV == "LOCAL": # local or demo
weave_project_name = "cfai/attribution-exp"
elif ENV == "DEV":
weave_project_name = "cfai/attribution-dev"
elif ENV == "UAT":
weave_project_name = "cfai/attribution-uat"
elif ENV == "PROD":
pass
if ENV != "PROD":
# disabled for testing at scale
# weave.init(project_name=weave_project_name)
print("something")
settings = get_settings()
prompts = get_prompts()
logger = setup_logger(__name__)
class AnthropicService(BaseAttributionService):
def __init__(self):
self.client = AsyncAnthropic(api_key=settings.ANTHROPIC_API_KEY)
@weave.op
async def extract_attributes(
self,
attributes_model: Type[BaseModel],
ai_model: str,
img_urls: List[str],
product_taxonomy: str,
product_data: Dict[str, Union[str, List[str]]],
pil_images: List[Any] = None, # do not remove, this is for weave
img_paths: List[str] = None,
) -> Dict[str, Any]:
logger.info("Extracting info via Anthropic...")
tools = [
{
"name": "extract_garment_info",
"description": "Extracts key information from the image.",
"input_schema": attributes_model.model_json_schema(),
"cache_control": {"type": "ephemeral"},
}
]
if img_urls is not None:
image_messages = [
{
"type": "image",
"source": {"type": "url", "url": img_url},
}
for img_url in img_urls
]
elif img_paths is not None:
image_messages = [
{
"type": "image",
"source": {
"type": "base64",
"media_type": f"image/{get_data_format(img_path)}",
"data": get_image_data(img_path),
},
}
for img_path in img_paths
]
else:
# this is not expected, raise some errors here later.
pass
system_message = [{"type": "text", "text": prompts.EXTRACT_INFO_SYSTEM_MESSAGE}]
text_messages = [
{
"type": "text",
"text": prompts.EXTRACT_INFO_HUMAN_MESSAGE.format(
product_taxonomy=product_taxonomy,
product_data=product_data_to_str(product_data),
),
}
]
messages = [{"role": "user", "content": text_messages + image_messages}]
# try:
try:
response = await self.client.messages.create(
model=ai_model,
extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"},
max_tokens=2048,
system=system_message,
tools=tools,
messages=messages,
# temperature=0.0,
# top_p=1e-45,
top_k=1,
)
except anthropic.BadRequestError as e:
raise BadRequestError(e.message)
except Exception as e:
raise VendorError(
errors.VENDOR_THROW_ERROR.format(error_message=exception_to_str(e))
)
for content in response.content:
if content.type == "tool_use":
if content.input is None or not content.input:
raise VendorError(
errors.VENDOR_THROW_ERROR.format(
error_message="content.input is None or content.input is empty"
)
)
return content.input
raise VendorError(
errors.VENDOR_THROW_ERROR.format(error_message="No tool_use found")
)
@weave.op
async def follow_schema(self, schema, data):
logger.info("Following structure via Anthropic...")
tools = [
{
"name": "extract_garment_info",
"description": prompts.FOLLOW_SCHEMA_HUMAN_MESSAGE,
"input_schema": schema,
"cache_control": {"type": "ephemeral"},
}
]
text_messages = [
{
"type": "text",
"text": prompts.FOLLOW_SCHEMA_HUMAN_MESSAGE.format(json_info=data),
}
]
system_message = [
{"type": "text", "text": prompts.FOLLOW_SCHEMA_SYSTEM_MESSAGE}
]
messages = [{"role": "user", "content": text_messages}]
try:
response = await self.client.messages.create(
model=settings.ANTHROPIC_DEFAULT_MODEL,
extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"},
max_tokens=2048,
system=system_message,
tools=tools,
messages=messages,
)
except Exception as e:
raise VendorError(
errors.VENDOR_THROW_ERROR.format(error_message=exception_to_str(e))
)
for content in response.content:
if content.type == "tool_use":
return content.input["json_info"]
return {"status": "ERROR: no tool_use found"}