import os os.environ["HUGGINGFACE_DEMO"] = "1" # set before import from app from dotenv import load_dotenv load_dotenv() ################################################################################################ import gradio as gr import uuid import shutil from app.config import get_settings from app.schemas.requests import Attribute from app.request_handler import handle_extract from app.services.factory import AIServiceFactory settings = get_settings() IMAGE_MAX_SIZE = 1536 async def forward_request( attributes, product_taxonomy, product_data, ai_model, pil_images ): # prepare temp folder request_id = str(uuid.uuid4()) request_temp_folder = os.path.join("gradio_temp", request_id) os.makedirs(request_temp_folder, exist_ok=True) try: # convert attributes to schema attributes = "attributes_object = {" + attributes + "}" try: attributes = exec(attributes, globals()) except: raise gr.Error( "Invalid `Attribute Schema`. Please insert valid schema following the example." ) for key, value in attributes_object.items(): # type: ignore attributes_object[key] = Attribute(**value) # type: ignore if product_data == "": product_data = "{}" product_data_code = f"product_data_object = {product_data}" try: exec(product_data_code, globals()) except: raise gr.Error( "Invalid `Product Data`. Please insert valid dictionary or leave it empty." ) if pil_images is None: raise gr.Error("Please upload image(s) of the product") pil_images = [pil_image[0] for pil_image in pil_images] img_paths = [] for i, pil_image in enumerate(pil_images): if max(pil_image.size) > IMAGE_MAX_SIZE: ratio = IMAGE_MAX_SIZE / max(pil_image.size) pil_image = pil_image.resize( (int(pil_image.width * ratio), int(pil_image.height * ratio)) ) img_path = os.path.join(request_temp_folder, f"{i}.jpg") if pil_image.mode in ("RGBA", "LA") or ( pil_image.mode == "P" and "transparency" in pil_image.info ): pil_image = pil_image.convert("RGBA") if pil_image.getchannel("A").getextrema() == ( 255, 255, ): # if fully opaque, save as JPEG pil_image = pil_image.convert("RGB") image_format = "JPEG" else: image_format = "PNG" else: image_format = "JPEG" pil_image.save(img_path, image_format, quality=100, subsampling=0) img_paths.append(img_path) # mapping if ai_model in settings.OPENAI_MODELS: ai_vendor = "openai" elif ai_model in settings.ANTHROPIC_MODELS: ai_vendor = "anthropic" elif ai_model in settings.GEMINI_MODELS: ai_vendor = "gemini" service = AIServiceFactory.get_service(ai_vendor) try: json_attributes = await service.extract_attributes_with_validation( attributes_object, # type: ignore ai_model, None, product_taxonomy, product_data_object, # type: ignore img_paths=img_paths, ) except: raise gr.Error("Failed to extract attributes. Something went wrong.") finally: # remove temp folder anyway shutil.rmtree(request_temp_folder) gr.Info("Process completed!") return json_attributes def add_attribute_schema(attributes, attr_name, attr_desc, attr_type, allowed_values): schema = f""" "{attr_name}": {{ "description": "{attr_desc}", "data_type": "{attr_type}", "allowed_values": [ {', '.join([f'"{v.strip()}"' for v in allowed_values.split(',')]) if allowed_values != "" else ""} ] }}, """ return attributes + schema, "", "", "", "" sample_schema = """"category": { "description": "Category of the garment", "data_type": "list[string]", "allowed_values": [ "upper garment", "lower garment", "footwear", "accessory", "headwear", "dresses" ] }, "color": { "description": "Color of the garment", "data_type": "list[string]", "allowed_values": [ "black", "white", "red", "blue", "green", "yellow", "pink", "purple", "orange", "brown", "grey", "beige", "multi-color", "other" ] }, "pattern": { "description": "Pattern of the garment", "data_type": "list[string]", "allowed_values": [ "plain", "striped", "checkered", "floral", "polka dot", "camouflage", "animal print", "abstract", "other" ] }, "material": { "description": "Material of the garment", "data_type": "string", "allowed_values": [] } """ description = """ This is a simple demo for Attribution. Follow the steps below: 1. Upload image(s) of a product. 2. Enter the product taxonomy (e.g. 'upper garment', 'lower garment', 'bag'). If only one product is in the image, you can leave this field empty. 3. Select the AI model to use. 4. Enter known attributes (optional). 5. Enter the attribute schema or use the "Add Attributes" section to add attributes. 6. Click "Extract Attributes" to get the extracted attributes. """ product_data_placeholder = """Example: { "brand": "Leaf", "size": "M", "product_name": "Leaf T-shirt", "color": "red" } """ product_data_value = """ { "data1": "", "data2": "" } """ with gr.Blocks(title="Internal Demo for Attribution") as demo: with gr.Row(): with gr.Column(scale=12): gr.Markdown( """