import gradio as gr from transformers import pipeline # Load your fine-tuned model from Hugging Face Hub model_id = "peterjandre/codet5-vbnet-csharp" # Use text2text-generation pipeline (suitable for CodeT5) generator = pipeline("text2text-generation", model=model_id) def generate_code(prompt): if not prompt: return "Please enter a prompt." outputs = generator(prompt, max_length=256, num_return_sequences=1) return outputs[0]['generated_text'] # Build Gradio interface iface = gr.Interface( fn=generate_code, inputs=gr.Textbox(lines=5, placeholder="Enter VB.NET code here...", label="VB.NET Code Input"), outputs=gr.Textbox(label="Generated C# Code"), title="CodeT5 VBNet to C# Code Generator", description="Generate C# code from VB.NET code using a fine-tuned CodeT5 model." ) if __name__ == "__main__": iface.launch(share=False)