Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -3,80 +3,133 @@ import gradio as gr
|
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
from transformers.utils import logging as hf_logging
|
5 |
|
|
|
6 |
# Persistent cache + request log
|
|
|
7 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
8 |
LOG_FILE = "/data/requests.log"
|
9 |
-
|
|
|
|
|
10 |
ts = datetime.datetime.utcnow().strftime("%H:%M:%S.%f")[:-3]
|
11 |
line = f"[{ts}] {msg}"
|
12 |
print(line, flush=True)
|
13 |
-
try:
|
14 |
-
with open(LOG_FILE, "a") as f:
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
-
SYSTEM_MSG = ("You are SchoolSpirit AI, the upbeat mascot for a company that "
|
22 |
-
"installs on‑prem AI chatbots in schools. Keep answers short, "
|
23 |
-
"friendly, and safe.")
|
24 |
|
|
|
|
|
|
|
25 |
# Load model
|
|
|
26 |
hf_logging.set_verbosity_error()
|
27 |
try:
|
28 |
log("Loading model …")
|
29 |
tok = AutoTokenizer.from_pretrained(MODEL_ID)
|
30 |
model = AutoModelForCausalLM.from_pretrained(
|
31 |
-
MODEL_ID, device_map="auto", torch_dtype="auto"
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
MODEL_ERR = None
|
35 |
log("Model loaded ✔")
|
36 |
-
except Exception as exc:
|
37 |
MODEL_ERR, gen = f"Model load error: {exc}", None
|
38 |
log(MODEL_ERR)
|
39 |
|
40 |
clean = lambda t: re.sub(r"\s+", " ", t.strip()) or "…"
|
41 |
-
trim
|
42 |
|
|
|
43 |
# Chat logic
|
44 |
-
|
|
|
|
|
|
|
45 |
log(f"User sent {len(user_msg)} chars")
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
user_msg = clean(user_msg or "")
|
51 |
-
if not user_msg:
|
52 |
-
|
|
|
53 |
return f"Message too long (>{MAX_INPUT_CH} chars)."
|
54 |
|
55 |
-
history.append({"role":"user","content":user_msg})
|
56 |
history = trim(history)
|
57 |
|
58 |
-
prompt_lines=
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
prompt = "\n".join(prompt_lines)
|
62 |
log(f"Prompt {len(prompt)} chars → generating")
|
63 |
|
64 |
-
t0=time.time()
|
65 |
try:
|
66 |
-
raw
|
67 |
-
reply = clean(raw.split("AI:",1)[-1])
|
68 |
-
reply = re.split(r"\b(?:User:|AI:)", reply, 1)[0].strip()
|
69 |
log(f"generate() {time.time()-t0:.2f}s, reply {len(reply)} chars")
|
70 |
except Exception:
|
71 |
-
log("❌ Inference exception:\n"+traceback.format_exc())
|
72 |
-
reply="Sorry—backend crashed. Please try again later."
|
73 |
|
74 |
return reply
|
75 |
|
|
|
|
|
76 |
# UI
|
|
|
77 |
gr.ChatInterface(
|
78 |
fn=chat_fn,
|
79 |
-
chatbot=gr.Chatbot(
|
|
|
|
|
|
|
|
|
80 |
title="SchoolSpirit AI Chat",
|
81 |
theme=gr.themes.Soft(primary_hue="blue"),
|
82 |
type="messages",
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
from transformers.utils import logging as hf_logging
|
5 |
|
6 |
+
# ---------------------------------------------------------------------------
|
7 |
# Persistent cache + request log
|
8 |
+
# ---------------------------------------------------------------------------
|
9 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
10 |
LOG_FILE = "/data/requests.log"
|
11 |
+
|
12 |
+
|
13 |
+
def log(msg: str):
|
14 |
ts = datetime.datetime.utcnow().strftime("%H:%M:%S.%f")[:-3]
|
15 |
line = f"[{ts}] {msg}"
|
16 |
print(line, flush=True)
|
17 |
+
try:
|
18 |
+
with open(LOG_FILE, "a") as f:
|
19 |
+
f.write(line + "\n")
|
20 |
+
except FileNotFoundError:
|
21 |
+
pass
|
22 |
+
|
23 |
+
|
24 |
+
# ---------------------------------------------------------------------------
|
25 |
+
# Configuration
|
26 |
+
# ---------------------------------------------------------------------------
|
27 |
+
MODEL_ID = "ibm-granite/granite-3.3-2b-instruct" # 2‑B fits HF CPU Space
|
28 |
+
MAX_TURNS = 4 # keep last N user/AI pairs
|
29 |
+
MAX_TOKENS = 64
|
30 |
+
MAX_INPUT_CH = 300
|
31 |
|
32 |
+
SYSTEM_MSG = (
|
33 |
+
"You are **SchoolSpirit AI**, the official digital mascot for "
|
34 |
+
"SchoolSpirit AI LLC, founded by Charles Norton in 2025. The company "
|
35 |
+
"specializes in on‑prem AI chat mascots, custom fine‑tuning of language "
|
36 |
+
"models, and turnkey GPU servers for K‑12 schools and education vendors.\n\n"
|
37 |
+
"GUIDELINES:\n"
|
38 |
+
"• Respond in a warm, encouraging tone suitable for students, parents, "
|
39 |
+
"and staff.\n"
|
40 |
+
"• Keep answers concise (≤ 4 sentences) unless asked for detail.\n"
|
41 |
+
"• If unsure or out of scope, say you’re not sure and offer human follow‑up.\n"
|
42 |
+
"• No personal data collection, no medical/legal/financial advice.\n"
|
43 |
+
"• Maintain professionalism—no profanity, politics, or mature themes."
|
44 |
)
|
|
|
|
|
|
|
45 |
|
46 |
+
WELCOME_MSG = "Welcome to SchoolSpirit AI! Do you have any questions?"
|
47 |
+
|
48 |
+
# ---------------------------------------------------------------------------
|
49 |
# Load model
|
50 |
+
# ---------------------------------------------------------------------------
|
51 |
hf_logging.set_verbosity_error()
|
52 |
try:
|
53 |
log("Loading model …")
|
54 |
tok = AutoTokenizer.from_pretrained(MODEL_ID)
|
55 |
model = AutoModelForCausalLM.from_pretrained(
|
56 |
+
MODEL_ID, device_map="auto", torch_dtype="auto"
|
57 |
+
)
|
58 |
+
gen = pipeline(
|
59 |
+
"text-generation",
|
60 |
+
model=model,
|
61 |
+
tokenizer=tok,
|
62 |
+
max_new_tokens=MAX_TOKENS,
|
63 |
+
do_sample=True,
|
64 |
+
temperature=0.6,
|
65 |
+
)
|
66 |
MODEL_ERR = None
|
67 |
log("Model loaded ✔")
|
68 |
+
except Exception as exc: # noqa: BLE001
|
69 |
MODEL_ERR, gen = f"Model load error: {exc}", None
|
70 |
log(MODEL_ERR)
|
71 |
|
72 |
clean = lambda t: re.sub(r"\s+", " ", t.strip()) or "…"
|
73 |
+
trim = lambda m: m if len(m) <= 1 + MAX_TURNS * 2 else [m[0]] + m[-MAX_TURNS * 2 :]
|
74 |
|
75 |
+
# ---------------------------------------------------------------------------
|
76 |
# Chat logic
|
77 |
+
# ---------------------------------------------------------------------------
|
78 |
+
|
79 |
+
|
80 |
+
def chat_fn(user_msg: str, history: list):
|
81 |
log(f"User sent {len(user_msg)} chars")
|
82 |
+
# Seed system + welcome messages on first call
|
83 |
+
if not history or history[0]["role"] != "system":
|
84 |
+
history = [
|
85 |
+
{"role": "system", "content": SYSTEM_MSG},
|
86 |
+
{"role": "assistant", "content": WELCOME_MSG},
|
87 |
+
]
|
88 |
+
|
89 |
+
if MODEL_ERR:
|
90 |
+
return MODEL_ERR
|
91 |
|
92 |
user_msg = clean(user_msg or "")
|
93 |
+
if not user_msg:
|
94 |
+
return "Please type something."
|
95 |
+
if len(user_msg) > MAX_INPUT_CH:
|
96 |
return f"Message too long (>{MAX_INPUT_CH} chars)."
|
97 |
|
98 |
+
history.append({"role": "user", "content": user_msg})
|
99 |
history = trim(history)
|
100 |
|
101 |
+
prompt_lines = [
|
102 |
+
m["content"]
|
103 |
+
if m["role"] == "system"
|
104 |
+
else f'{"User" if m["role"]=="user" else "AI"}: {m["content"]}'
|
105 |
+
for m in history
|
106 |
+
] + ["AI:"]
|
107 |
prompt = "\n".join(prompt_lines)
|
108 |
log(f"Prompt {len(prompt)} chars → generating")
|
109 |
|
110 |
+
t0 = time.time()
|
111 |
try:
|
112 |
+
raw = gen(prompt)[0]["generated_text"]
|
113 |
+
reply = clean(raw.split("AI:", 1)[-1])
|
114 |
+
reply = re.split(r"\b(?:User:|AI:)", reply, 1)[0].strip()
|
115 |
log(f"generate() {time.time()-t0:.2f}s, reply {len(reply)} chars")
|
116 |
except Exception:
|
117 |
+
log("❌ Inference exception:\n" + traceback.format_exc())
|
118 |
+
reply = "Sorry—backend crashed. Please try again later."
|
119 |
|
120 |
return reply
|
121 |
|
122 |
+
|
123 |
+
# ---------------------------------------------------------------------------
|
124 |
# UI
|
125 |
+
# ---------------------------------------------------------------------------
|
126 |
gr.ChatInterface(
|
127 |
fn=chat_fn,
|
128 |
+
chatbot=gr.Chatbot(
|
129 |
+
height=480,
|
130 |
+
type="messages",
|
131 |
+
value=[("", WELCOME_MSG)], # pre-populate AI welcome bubble
|
132 |
+
),
|
133 |
title="SchoolSpirit AI Chat",
|
134 |
theme=gr.themes.Soft(primary_hue="blue"),
|
135 |
type="messages",
|