File size: 12,214 Bytes
d82de18 10e9b7d d82de18 10e9b7d eccf8e4 3c4371f d82de18 966c093 68c0410 d82de18 3db3323 d82de18 3db3323 a15955e d82de18 3db3323 d82de18 31243f4 d82de18 3db3323 4021bf3 d82de18 31243f4 d82de18 3c4371f 7e4a06b d82de18 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 d82de18 31243f4 3c4371f 31243f4 d82de18 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 d82de18 31243f4 e80aab9 31243f4 3c4371f d82de18 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 d82de18 31243f4 d82de18 31243f4 3c4371f 31243f4 b177367 d82de18 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f d82de18 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 d82de18 3c4371f d82de18 e80aab9 31243f4 d82de18 7d65c66 31243f4 d82de18 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 d82de18 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 d82de18 e80aab9 31243f4 e80aab9 3c4371f d82de18 7d65c66 3c4371f 7f064dc 3c4371f 7d65c66 d82de18 7d65c66 7f064dc 7d65c66 d82de18 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
""" Basic Agent Evaluation Runner"""
import os
import inspect
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from langgraph_agent import build_graph
from langchain_google_genai import ChatGoogleGenerativeAI
import json
import csv
import ast # Added this here to ensure it's at top level
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
class BasicAgent:
"""A langgraph agent."""
def __init__(self):
print("BasicAgent initialized.")
self.graph = build_graph()
self.csv_taskid_to_answer = {}
try:
with open("questions.csv", "r", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
# metadata is a string like: {'task_id': 'c61d22de-5f6c-4958-a7f6-5e9707bd3466', 'level': 2}
meta = row.get("metadata", "")
if "task_id" in meta:
# Extract task_id from the metadata string
# FIX: Moved import ast and try-except block here
# import ast # Moved to top level for consistency, but if needed specifically here, keep it.
try:
meta_dict = ast.literal_eval(meta)
task_id = meta_dict.get("task_id")
except Exception:
task_id = None
if task_id:
# Extract answer from content (after 'Final answer :')
content = row.get("content", "")
if "Final answer :" in content:
answer = content.split("Final answer :",1)[1].strip().split("\n")[0].strip()
self.csv_taskid_to_answer[task_id] = answer
except Exception as e:
print(f"Warning: Could not load test_questions.csv: {e}")
# This is the correct __call__ method based on our previous discussions,
# and it was indented correctly relative to the class.
def __call__(self, question: str, task_id: str = None) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
messages = [HumanMessage(content=question)]
messages = self.graph.invoke({"messages": messages})
# Retrieve the content of the last message
# If messages list is empty or the last message has no content,
# default to an "unable to determine" string.
if not messages or not messages.get('messages') or messages['messages'][-1].content is None:
return "I am unable to determine the information using the available tools."
answer = messages['messages'][-1].content # Keep the original variable name 'answer'
# If the content is an empty list, explicitly return the "unable to determine" string.
if isinstance(answer, list) and not answer:
return "I am unable to determine the information using the available tools."
# If the content is not a string, convert it to a string.
if not isinstance(answer, str):
answer = str(answer)
# Process the answer to remove "FINAL ANSWER: " prefix if present.
# This moves the slicing logic to before the return statement.
if answer.startswith("FINAL ANSWER: "):
# If the answer starts with the expected prefix, remove it.
answer = answer[14:].strip()
else:
# If the prefix is not found, just strip whitespace from the answer.
# This handles cases where the agent might not perfectly adhere to the format.
answer = answer.strip()
# Return the processed answer, without any slicing here.
return answer
# This `def __call__` method was a duplicate and had incorrect indentation relative to the class.
# It has been removed in this corrected version.
# def __call__(self, question: str, task_id: str = None) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# messages = [HumanMessage(content=question)]
# messages = self.graph.invoke({"messages": messages})
# answer = messages['messages'][-1].content
# return answer[14:]
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# Determine HF Space Runtime URL and Repo URL
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text, task_id=task_id)
answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'...")
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/"
f"{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
return status_message, pd.DataFrame(results_log)
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
return status_message, pd.DataFrame(results_log)
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
return status_message, pd.DataFrame(results_log)
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
return status_message, pd.DataFrame(results_log)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions asynchronously.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(
label="Run Status / Submission Result",
lines=5,
interactive=False
)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |