File size: 9,949 Bytes
d82de18
10e9b7d
d82de18
10e9b7d
eccf8e4
3c4371f
d82de18
966c093
d82de18
 
 
10e9b7d
e80aab9
3db6293
e80aab9
d82de18
31243f4
 
d82de18
31243f4
 
d82de18
 
 
12443f6
d82de18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc75e9
d82de18
 
8cb566f
31243f4
d82de18
 
 
 
4021bf3
d82de18
 
31243f4
 
 
 
d82de18
 
3c4371f
7e4a06b
d82de18
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
d82de18
31243f4
 
 
3c4371f
31243f4
d82de18
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
d82de18
 
31243f4
e80aab9
31243f4
 
3c4371f
d82de18
 
 
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
d82de18
 
 
 
 
 
 
 
 
 
31243f4
d82de18
 
 
 
 
 
31243f4
 
3c4371f
31243f4
 
b177367
d82de18
 
 
 
 
 
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
d82de18
 
3c4371f
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
d82de18
3c4371f
 
 
d82de18
e80aab9
31243f4
 
d82de18
7d65c66
31243f4
 
d82de18
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
d82de18
e514fd7
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
d82de18
 
 
 
 
 
 
 
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
 
d82de18
7d65c66
3c4371f
 
7f064dc
3c4371f
7d65c66
 
d82de18
7d65c66
7f064dc
 
7d65c66
 
 
d82de18
3c4371f
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
""" Basic Agent Evaluation Runner"""
import os
import inspect
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from langgraph_agent import build_graph
import json
import csv


# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"


# --- Basic Agent Definition ---
class BasicAgent:
    """A langgraph agent."""
    def __init__(self):
        print("BasicAgent initialized.")
        self.graph = build_graph()
        self.csv_taskid_to_answer = {}
        try:
            with open("questions.csv", "r", encoding="utf-8") as f:
                reader = csv.DictReader(f)
                for row in reader:
                    # metadata is a string like: {'task_id': 'c61d22de-5f6c-4958-a7f6-5e9707bd3466', 'level': 2}
                    meta = row.get("metadata", "")
                    if "task_id" in meta:
                        # Extract task_id from the metadata string
                        import ast
                        try:
                            meta_dict = ast.literal_eval(meta)
                            task_id = meta_dict.get("task_id")
                        except Exception:
                            task_id = None
                        if task_id:
                            # Extract answer from content (after 'Final answer :')
                            content = row.get("content", "")
                            if "Final answer :" in content:
                                answer = content.split("Final answer :",1)[1].strip().split("\n")[0].strip()
                                self.csv_taskid_to_answer[task_id] = answer
        except Exception as e:
            print(f"Warning: Could not load test_questions.csv: {e}")


    def __call__(self, question: str, task_id: str = None) -> str:

        print(f"Agent received question (first 50 chars): {question[:50]}...")
        messages = [HumanMessage(content=question)]
        messages = self.graph.invoke({"messages": messages})
        answer = messages['messages'][-1].content
        return answer[14:]


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # Determine HF Space Runtime URL and Repo URL
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text, task_id=task_id)
            answers_payload.append({
                "task_id": task_id,
                "submitted_answer": submitted_answer
            })
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    print(f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'...")

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/"
            f"{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        return status_message, pd.DataFrame(results_log)
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        return status_message, pd.DataFrame(results_log)
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        return status_message, pd.DataFrame(results_log)
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        return status_message, pd.DataFrame(results_log)


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions asynchronously.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(
        label="Run Status / Submission Result",
        lines=5,
        interactive=False
    )
    results_table = gr.DataFrame(
        label="Questions and Agent Answers",
        wrap=True
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"    Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"    Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"    Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-" * (60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)