File size: 8,412 Bytes
10e9b7d
 
eccf8e4
3c4371f
c51685e
4861ba6
d82de18
966c093
d82de18
a15955e
d82de18
3db3323
 
 
 
 
d82de18
31243f4
d82de18
 
3db3323
 
 
 
7951f5f
3db3323
 
 
7951f5f
3db3323
7951f5f
 
 
4861ba6
 
 
 
 
 
 
 
 
c98850d
4861ba6
 
7951f5f
3db3323
7951f5f
4021bf3
d82de18
 
3c4371f
7e4a06b
d82de18
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
31243f4
 
 
3c4371f
31243f4
d82de18
36ed51a
c1fd3d2
3c4371f
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
d82de18
 
31243f4
4861ba6
31243f4
 
e80aab9
7d65c66
 
c51685e
3c4371f
31243f4
 
 
 
 
 
 
db13a28
 
c98850d
 
 
 
4861ba6
d82de18
 
db13a28
d82de18
 
 
 
4861ba6
d82de18
31243f4
d82de18
c51685e
 
db13a28
c51685e
d82de18
 
 
 
 
31243f4
 
3c4371f
31243f4
 
4861ba6
 
db13a28
 
4861ba6
 
 
 
 
 
 
 
e80aab9
db13a28
e80aab9
 
31243f4
e80aab9
 
3c4371f
ca03230
3c4371f
e80aab9
 
31243f4
 
7d65c66
c98850d
31243f4
ca03230
 
e80aab9
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
d82de18
e514fd7
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
d82de18
 
 
 
 
 
 
 
 
e80aab9
31243f4
 
 
e80aab9
 
c98850d
e80aab9
3c4371f
 
d82de18
7d65c66
3c4371f
 
7f064dc
3c4371f
7d65c66
 
d82de18
7d65c66
7f064dc
 
7d65c66
 
 
d82de18
3c4371f
31243f4
7951f5f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import gradio as gr
import requests
import pandas as pd
import json
import re
from langchain_core.messages import HumanMessage
from langgraph_agent import build_graph

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
        self.graph = build_graph()

    def __call__(self, question: str, task_id: str = None) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        messages = [HumanMessage(content=question)]
        messages = self.graph.invoke({"messages": messages})

        if not messages or not messages.get('messages') or messages['messages'][-1].content is None:
            return "I am unable to determine the information using the available tools."

        answer = messages['messages'][-1].content

        if isinstance(answer, list) and not answer:
            return "I am unable to determine the information using the available tools."

        if not isinstance(answer, str):
            answer = str(answer)

        answer = answer.strip()

        match = re.search(r'FINAL ANSWER:\s*(.*)', answer, re.IGNORECASE | re.DOTALL)
        if match:
            final_answer = match.group(1).strip()
            if (final_answer.startswith('"') and final_answer.endswith('"')) or \
               (final_answer.startswith("'") and final_answer.endswith("'")):
                final_answer = final_answer[1:-1].strip()
            answer = final_answer
        else:
            print("Warning: 'FINAL ANSWER:' not found; submitting full answer.")

        if not answer:
            answer = "I am unable to determine the information using the available tools."

        return answer

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []

    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            model_answer = agent(question_text, task_id=task_id).strip()
            # Clean trailing quotes if any
            if (model_answer.startswith('"') and model_answer.endswith('"')) or \
               (model_answer.startswith("'") and model_answer.endswith("'")):
                model_answer = model_answer[1:-1].strip()

            print(f"Answer for task {task_id}: '{model_answer}'")
            answers_payload.append({
                "task_id": task_id,
                "submitted_answer": model_answer
            })
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": model_answer
            })
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            answers_payload.append({
                "task_id": task_id,
                "submitted_answer": f"AGENT ERROR: {e}"
            })
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }

    print(f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'...")
    print("Submission payload preview (first 3 answers):")
    for ans in answers_payload[:3]:
        print(json.dumps(ans, ensure_ascii=False))

    print(f"Submitting answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions asynchronously.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(
        label="Run Status / Submission Result",
        lines=5,
        interactive=False
    )
    results_table = gr.DataFrame(
        label="Questions and Agent Answers",
        wrap=True
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )


if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"    Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"    Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"    Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-" * (60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)