File size: 8,412 Bytes
10e9b7d eccf8e4 3c4371f c51685e 4861ba6 d82de18 966c093 d82de18 a15955e d82de18 3db3323 d82de18 31243f4 d82de18 3db3323 7951f5f 3db3323 7951f5f 3db3323 7951f5f 4861ba6 c98850d 4861ba6 7951f5f 3db3323 7951f5f 4021bf3 d82de18 3c4371f 7e4a06b d82de18 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 31243f4 3c4371f 31243f4 d82de18 36ed51a c1fd3d2 3c4371f 31243f4 eccf8e4 31243f4 7d65c66 31243f4 d82de18 31243f4 4861ba6 31243f4 e80aab9 7d65c66 c51685e 3c4371f 31243f4 db13a28 c98850d 4861ba6 d82de18 db13a28 d82de18 4861ba6 d82de18 31243f4 d82de18 c51685e db13a28 c51685e d82de18 31243f4 3c4371f 31243f4 4861ba6 db13a28 4861ba6 e80aab9 db13a28 e80aab9 31243f4 e80aab9 3c4371f ca03230 3c4371f e80aab9 31243f4 7d65c66 c98850d 31243f4 ca03230 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 d82de18 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 d82de18 e80aab9 31243f4 e80aab9 c98850d e80aab9 3c4371f d82de18 7d65c66 3c4371f 7f064dc 3c4371f 7d65c66 d82de18 7d65c66 7f064dc 7d65c66 d82de18 3c4371f 31243f4 7951f5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import gradio as gr
import requests
import pandas as pd
import json
import re
from langchain_core.messages import HumanMessage
from langgraph_agent import build_graph
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
self.graph = build_graph()
def __call__(self, question: str, task_id: str = None) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
messages = [HumanMessage(content=question)]
messages = self.graph.invoke({"messages": messages})
if not messages or not messages.get('messages') or messages['messages'][-1].content is None:
return "I am unable to determine the information using the available tools."
answer = messages['messages'][-1].content
if isinstance(answer, list) and not answer:
return "I am unable to determine the information using the available tools."
if not isinstance(answer, str):
answer = str(answer)
answer = answer.strip()
match = re.search(r'FINAL ANSWER:\s*(.*)', answer, re.IGNORECASE | re.DOTALL)
if match:
final_answer = match.group(1).strip()
if (final_answer.startswith('"') and final_answer.endswith('"')) or \
(final_answer.startswith("'") and final_answer.endswith("'")):
final_answer = final_answer[1:-1].strip()
answer = final_answer
else:
print("Warning: 'FINAL ANSWER:' not found; submitting full answer.")
if not answer:
answer = "I am unable to determine the information using the available tools."
return answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
model_answer = agent(question_text, task_id=task_id).strip()
# Clean trailing quotes if any
if (model_answer.startswith('"') and model_answer.endswith('"')) or \
(model_answer.startswith("'") and model_answer.endswith("'")):
model_answer = model_answer[1:-1].strip()
print(f"Answer for task {task_id}: '{model_answer}'")
answers_payload.append({
"task_id": task_id,
"submitted_answer": model_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": model_answer
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
answers_payload.append({
"task_id": task_id,
"submitted_answer": f"AGENT ERROR: {e}"
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'...")
print("Submission payload preview (first 3 answers):")
for ans in answers_payload[:3]:
print(json.dumps(ans, ensure_ascii=False))
print(f"Submitting answers to: {submit_url}")
try:
response = requests.post(submit_url, json=data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions asynchronously.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(
label="Run Status / Submission Result",
lines=5,
interactive=False
)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|