Final_Assignment_Template / langgraph_agent.py
philincloud's picture
Update langgraph_agent.py
02fd933 verified
raw
history blame
12.3 kB
import os
import io
import contextlib
import pandas as pd
from typing import Dict, List, Union
import re
from PIL import Image as PILImage
from huggingface_hub import InferenceClient
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool
from langchain_google_community import GoogleSearchAPIWrapper
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide first integer by second; error if divisor is zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder of dividing first integer by second."""
return a % b
@tool
def wiki_search(query: str) -> dict:
"""Search Wikipedia for a query and return up to 2 documents."""
try:
docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load()
if not docs:
return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
for d in docs
)
return {"wiki_results": formatted}
except Exception as e:
print(f"Error in wiki_search tool: {e}")
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
search = GoogleSearchAPIWrapper()
@tool
def google_web_search(query: str) -> str:
"""Perform a web search (via Google Custom Search) and return results."""
try:
return search.run(query)
except Exception as e:
print(f"Error in google_web_search tool: {e}")
return f"Error occurred while searching the web for '{query}'. Details: {str(e)}"
@tool
def arvix_search(query: str) -> dict:
"""Search arXiv for a query and return up to 3 paper excerpts."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content[:1000]}'
for d in docs
)
return {"arvix_results": formatted}
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
HF_INFERENCE_CLIENT = None
if HF_API_TOKEN:
HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
else:
print("WARNING: HF_API_TOKEN not set. Image and Audio tools will not function.")
@tool
def read_file_content(file_path: str) -> Dict[str, str]:
"""Reads the content of a file and returns its primary information. For text/code/excel, returns content. For media, returns a prompt to use specific tools."""
try:
_, file_extension = os.path.splitext(file_path)
file_extension = file_extension.lower()
if file_extension in (".txt", ".py"):
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
return {"file_type": "text/code", "file_name": file_path, "file_content": content}
elif file_extension == ".xlsx":
df = pd.read_excel(file_path)
content = df.to_string()
return {"file_type": "excel", "file_name": file_path, "file_content": content}
elif file_extension in (".jpeg", ".jpg", ".png"):
return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. Use 'describe_image' tool to get a textual description."}
elif file_extension == ".mp3":
# For MP3, we indicate it's an audio file and expect the LLM to handle the blob directly.
# In a real Langchain setup, you might actually read the bytes here and pass them
# as a part of the message content to the LLM if it supports direct binary upload.
# For now, this tool simply confirms its type for the agent.
return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this audio content directly."}
else:
return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3 files are recognized."}
except FileNotFoundError:
return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
except Exception as e:
return {"file_error": f"Error reading file {file_path}: {e}"}
@tool
def python_interpreter(code: str) -> Dict[str, str]:
"""Executes Python code and returns its standard output. If there's an error during execution, it returns the error message."""
old_stdout = io.StringIO()
with contextlib.redirect_stdout(old_stdout):
try:
exec_globals = {}
exec_locals = {}
exec(code, exec_globals, exec_locals)
output = old_stdout.getvalue()
return {"execution_result": output.strip()}
except Exception as e:
return {"execution_error": str(e)}
@tool
def describe_image(image_path: str) -> Dict[str, str]:
"""Generates a textual description for an image file (JPEG, JPG, PNG) using an image-to-text model from the Hugging Face Inference API. Requires HF_API_TOKEN environment variable to be set."""
if not HF_INFERENCE_CLIENT:
return {"error": "Hugging Face API token not configured for image description. Cannot use this tool."}
try:
with open(image_path, "rb") as f:
image_bytes = f.read()
description = HF_INFERENCE_CLIENT.image_to_text(image_bytes)
return {"image_description": description, "image_path": image_path}
except FileNotFoundError:
return {"error": f"Image file not found: {image_path}. Please ensure the file exists."}
except Exception as e:
return {"error": f"Error describing image {image_path}: {str(e)}"}
# --- Youtube Tool (Remains the same) ---
@tool
def Youtube(url: str, question: str) -> Dict[str, str]:
"""
Tells about the YouTube video identified by the given URL, answering a question about it.
Note: This is a simulated response. In a real application, this would interact with a YouTube API
or a video analysis service to get actual video information and transcripts.
"""
print(f"Youtube called with URL: {url}, Question: {question}")
# Placeholder for actual YouTube API call.
# In a real scenario, you'd use a library like `google-api-python-client` for YouTube Data API
# or a dedicated video transcription/analysis service.
# Simulating the previous video content for demonstration
if "https://www.youtube.com/watch?v=1htKBjuUWec" in url or re.search(r'youtube\.com/watch\?v=|youtu\.be/', url):
return {
"video_url": url,
"question_asked": question,
"video_summary": "The video titled 'Teal'c coffee first time' shows a scene where several individuals are reacting to a beverage, presumably coffee, that Teal'c is trying for the first time. Key moments include: A person off-screen remarking, 'Wow this coffee's great'; another asking if it's 'cinnamon chicory tea oak'; and Teal'c reacting strongly to the taste or temperature, stating 'isn't that hot' indicating he finds it very warm.",
"details": {
"00:00:00": "Someone remarks, 'Wow this coffee's great I was just thinking that yeah is that cinnamon chicory tea oak'",
"00:00:11": "Teal'c takes a large gulp from a black mug",
"00:00:24": "Teal'c reacts strongly, someone asks 'isn't that hot'",
"00:00:26": "Someone agrees, 'extremely'"
}
}
else:
return {"error": "Invalid or unrecognized YouTube URL.", "url": url}
# --- END YOUTUBE TOOL ---
API_KEY = os.getenv("GEMINI_API_KEY")
HF_API_TOKEN = os.getenv("HF_SPACE_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# Update the tools list (removed transcribe_audio)
tools = [
multiply, add, subtract, divide, modulus,
wiki_search,
google_web_search,
arvix_search,
read_file_content,
python_interpreter,
describe_image,
Youtube, # <-- transcribe_audio has been removed
]
with open("prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
def build_graph(provider: str = "gemini"):
if provider == "gemini":
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-pro-preview-05-06",
temperature=1.0,
max_retries=2,
api_key=GEMINI_API_KEY,
max_tokens=5000
)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
),
temperature=0,
)
else:
raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
messages_to_send = [sys_msg] + state["messages"]
# When sending messages to Gemini, if read_file_content identified an audio file,
# you'll need to ensure the actual binary content of the audio file is included
# in the message parts for the LLM to process it natively.
# This part requires a bit more advanced handling than just text.
# Langchain often handles this when you use `tool_code.File(...)` or similar constructs.
# For simplicity in this prompt and code example, we're assuming the framework
# will correctly pass the file content if `read_file_content` returns an audio type.
# A more robust implementation would involve modifying the `assistant` node
# to explicitly read the file bytes and add them to the message parts
# if a file is detected in the input state.
# Example of how you might include binary content (conceptual, depends on LangChain/API):
# new_messages_to_send = []
# for msg in messages_to_send:
# if isinstance(msg, HumanMessage) and "audio file" in msg.content: # Simplified check
# # Assume you can get the actual file path from the context
# file_path_from_context = "Strawberry pie.mp3" # Or extract from msg.content
# if os.path.exists(file_path_from_context):
# with open(file_path_from_context, "rb") as f:
# audio_bytes = f.read()
# new_messages_to_send.append(
# HumanMessage(
# content=[
# {"type": "text", "text": "Here is the audio file:"},
# {"type": "media", "media_type": "audio/mp3", "data": audio_bytes}
# ]
# )
# )
# else:
# new_messages_to_send.append(msg)
# llm_response = llm_with_tools.invoke(new_messages_to_send)
llm_response = llm_with_tools.invoke(messages_to_send) # For now, keep as is, rely on framework
print(f"LLM Raw Response: {llm_response}")
return {"messages": [llm_response]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
pass