Final_Assignment_Template / langgraph_agent.py
philincloud's picture
Update langgraph_agent.py
514b444 verified
raw
history blame
7.5 kB
import os
import io
import contextlib
import pandas as pd
from typing import Dict, List, Union
import re
from PIL import Image as PILImage # Keep PIL for potential future use or if other parts depend on it, but describe_image is removed.
from huggingface_hub import InferenceClient # Keep InferenceClient for other potential HF uses, but describe_image is removed.
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.document_loaders import WikipediaLoader
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool
from langchain_google_community import GoogleSearchAPIWrapper
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide first integer by second; error if divisor is zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder of dividing first integer by second."""
return a % b
@tool
def wiki_search(query: str) -> dict:
"""Search Wikipedia for a query and return up to 2 documents."""
try:
docs = WikipediaLoader(query=query, load_max_docs=5, lang="en", doc_content_chars_max=7000).load()
if not docs:
return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
for d in docs
)
return {"wiki_results": formatted}
except Exception as e:
print(f"Error in wiki_search tool: {e}")
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
search = GoogleSearchAPIWrapper()
@tool
def google_web_search(query: str) -> str:
"""Perform a web search (via Google Custom Search) and return results."""
try:
return search.run(query)
except Exception as e:
print(f"Error in google_web_search tool: {e}")
return f"Error occurred while searching the web for '{query}'. Details: {str(e)}"
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
MODEL = os.getenv("MODEL")
HF_INFERENCE_CLIENT = None
if HF_API_TOKEN:
HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
else:
print("WARNING: HF_API_TOKEN not set. If any other HF tools are used, they might not function.")
@tool
def read_file_content(file_path: str) -> Dict[str, str]:
"""Reads the content of a file and returns its primary information. For text/code/excel, returns content. For media, indicates it's a blob for LLM processing."""
try:
_, file_extension = os.path.splitext(file_path)
file_extension = file_extension.lower()
# Prioritize handling of video, audio, and image files for direct LLM processing
if file_extension in (".mp4", ".avi", ".mov", ".mkv", ".webm"):
return {"file_type": "video", "file_name": file_path, "file_content": f"Video file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this video content directly as a blob."}
elif file_extension == ".mp3":
return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this audio content directly as a blob."}
elif file_extension in (".jpeg", ".jpg", ".png"):
return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this image content directly as a blob."}
# Handle text and code files
elif file_extension in (".txt", ".py"):
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
return {"file_type": "text/code", "file_name": file_path, "file_content": content}
# Handle Excel files
elif file_extension == ".xlsx":
df = pd.read_excel(file_path)
content = df.to_string()
return {"file_type": "excel", "file_name": file_path, "file_content": content}
else:
return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3, .mp4, .avi, .mov, .mkv, .webm files are recognized."}
except FileNotFoundError:
return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
except Exception as e:
return {"file_error": f"Error reading file {file_path}: {e}"}
@tool
def python_interpreter(code: str) -> Dict[str, str]:
"""Executes Python code and returns its standard output. If there's an error during execution, it returns the error message."""
old_stdout = io.StringIO()
with contextlib.redirect_stdout(old_stdout):
try:
exec_globals = {}
exec_locals = {}
exec(code, exec_globals, exec_locals)
output = old_stdout.getvalue()
return {"execution_result": output.strip()}
except Exception as e:
return {"execution_error": str(e)}
API_KEY = os.getenv("GEMINI_API_KEY")
HF_API_TOKEN = os.getenv("HF_SPACE_TOKEN") # Kept for potential future HF uses, but not for describe_image
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# Updated tools list without Youtube
tools = [
multiply, add, subtract, divide, modulus,
wiki_search,
google_web_search,
read_file_content,
python_interpreter,
]
with open("prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
def build_graph(provider: str = "gemini"):
if provider == "gemini":
llm = ChatGoogleGenerativeAI(
model=MODEL,
temperature=1.0,
max_retries=2,
api_key=GEMINI_API_KEY,
max_tokens=5000
)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
),
temperature=0,
)
else:
raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
messages_to_send = [sys_msg] + state["messages"]
llm_response = llm_with_tools.invoke(messages_to_send, {"recursion_limit": 25})
print(f"LLM Raw Response: {llm_response}")
return {"messages": [llm_response]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
pass