|
import os |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition, ToolNode |
|
from langchain_openai import ChatOpenAI |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> float: |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> dict: |
|
docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted = "\n\n---\n\n".join( |
|
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content}' |
|
for d in docs |
|
) |
|
return {"wiki_results": formatted} |
|
|
|
@tool |
|
def web_search(query: str) -> dict: |
|
docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted = "\n\n---\n\n".join( |
|
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content}' |
|
for d in docs |
|
) |
|
return {"web_results": formatted} |
|
|
|
@tool |
|
def arvix_search(query: str) -> dict: |
|
docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted = "\n\n---\n\n".join( |
|
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content[:1000]}' |
|
for d in docs |
|
) |
|
return {"arvix_results": formatted} |
|
|
|
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN") |
|
|
|
|
|
|
|
tools = [ |
|
multiply, add, subtract, divide, modulus, |
|
wiki_search, web_search, arvix_search, |
|
] |
|
|
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
def build_graph(provider: str = "openai"): |
|
"""Build the LangGraph agent with chosen LLM (default: OpenAI).""" |
|
if provider == "openai": |
|
llm = ChatOpenAI( |
|
model_name="o4-mini-2025-04-16", |
|
openai_api_key=OPENAI_API_KEY, |
|
|
|
) |
|
elif provider == "huggingface": |
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
), |
|
temperature=0, |
|
) |
|
else: |
|
raise ValueError("Invalid provider. Choose 'openai' or 'huggingface'.") |
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
def assistant(state: MessagesState): |
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "assistant") |
|
builder.add_conditional_edges("assistant", tools_condition) |
|
builder.add_edge("tools", "assistant") |
|
|
|
return builder.compile() |
|
|
|
if __name__ == "__main__": |
|
graph = build_graph() |
|
msgs = graph.invoke({"messages":[ HumanMessage(content="Whatβs the capital of France?") ]}) |
|
for m in msgs["messages"]: |
|
m.pretty_print() |