Update langgraph_agent.py
Browse files- langgraph_agent.py +71 -14
langgraph_agent.py
CHANGED
@@ -1,4 +1,9 @@
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
2 |
from langgraph.graph import START, StateGraph, MessagesState
|
3 |
from langgraph.prebuilt import tools_condition, ToolNode
|
4 |
from langchain_openai import ChatOpenAI
|
@@ -36,7 +41,6 @@ def modulus(a: int, b: int) -> int:
|
|
36 |
"""Return the remainder of dividing first integer by second."""
|
37 |
return a % b
|
38 |
|
39 |
-
|
40 |
@tool
|
41 |
def wiki_search(query: str) -> dict:
|
42 |
"""Search Wikipedia for a query and return up to 2 documents."""
|
@@ -54,16 +58,19 @@ def wiki_search(query: str) -> dict:
|
|
54 |
print(f"Error in wiki_search tool: {e}")
|
55 |
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
|
56 |
|
57 |
-
|
58 |
@tool
|
59 |
def web_search(query: str) -> dict:
|
60 |
"""Perform a web search (via Tavily) and return up to 3 results."""
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
|
68 |
@tool
|
69 |
def arvix_search(query: str) -> dict:
|
@@ -75,6 +82,55 @@ def arvix_search(query: str) -> dict:
|
|
75 |
)
|
76 |
return {"arvix_results": formatted}
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
API_KEY = os.getenv("GEMINI_API_KEY")
|
79 |
HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN")
|
80 |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
@@ -83,6 +139,8 @@ GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
|
83 |
tools = [
|
84 |
multiply, add, subtract, divide, modulus,
|
85 |
wiki_search, web_search, arvix_search,
|
|
|
|
|
86 |
]
|
87 |
|
88 |
|
@@ -99,10 +157,9 @@ def build_graph(provider: str = "gemini"):
|
|
99 |
temperature=1.0,
|
100 |
max_retries=2,
|
101 |
api_key=GEMINI_API_KEY,
|
102 |
-
max_tokens=5000
|
103 |
)
|
104 |
|
105 |
-
|
106 |
elif provider == "huggingface":
|
107 |
llm = ChatHuggingFace(
|
108 |
llm=HuggingFaceEndpoint(
|
@@ -129,7 +186,7 @@ def build_graph(provider: str = "gemini"):
|
|
129 |
return builder.compile()
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
1 |
import os
|
2 |
+
import io
|
3 |
+
import contextlib
|
4 |
+
import pandas as pd # Added for Excel file handling
|
5 |
+
from typing import Dict, List, Union # Added for type hinting
|
6 |
+
|
7 |
from langgraph.graph import START, StateGraph, MessagesState
|
8 |
from langgraph.prebuilt import tools_condition, ToolNode
|
9 |
from langchain_openai import ChatOpenAI
|
|
|
41 |
"""Return the remainder of dividing first integer by second."""
|
42 |
return a % b
|
43 |
|
|
|
44 |
@tool
|
45 |
def wiki_search(query: str) -> dict:
|
46 |
"""Search Wikipedia for a query and return up to 2 documents."""
|
|
|
58 |
print(f"Error in wiki_search tool: {e}")
|
59 |
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
|
60 |
|
|
|
61 |
@tool
|
62 |
def web_search(query: str) -> dict:
|
63 |
"""Perform a web search (via Tavily) and return up to 3 results."""
|
64 |
+
try: # Added try-except block for robustness
|
65 |
+
docs = TavilySearchResults(max_results=3).invoke(query=query)
|
66 |
+
formatted = "\n\n---\n\n".join(
|
67 |
+
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content}'
|
68 |
+
for d in docs
|
69 |
+
)
|
70 |
+
return {"web_results": formatted}
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error in web_search tool: {e}")
|
73 |
+
return {"web_results": f"Error occurred while searching the web for '{query}'. Details: {str(e)}"}
|
74 |
|
75 |
@tool
|
76 |
def arvix_search(query: str) -> dict:
|
|
|
82 |
)
|
83 |
return {"arvix_results": formatted}
|
84 |
|
85 |
+
@tool
|
86 |
+
def read_file_content(file_path: str) -> Dict[str, str]:
|
87 |
+
"""
|
88 |
+
Reads the content of a file and returns it.
|
89 |
+
Supports text (.txt), Python (.py), and Excel (.xlsx) files.
|
90 |
+
For other file types, returns a message indicating limited support.
|
91 |
+
"""
|
92 |
+
try:
|
93 |
+
_, file_extension = os.path.splitext(file_path)
|
94 |
+
content = ""
|
95 |
+
if file_extension.lower() in (".txt", ".py"):
|
96 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
97 |
+
content = f.read()
|
98 |
+
elif file_extension.lower() == ".xlsx":
|
99 |
+
# Ensure pandas is installed for this.
|
100 |
+
df = pd.read_excel(file_path)
|
101 |
+
content = df.to_string() # Convert Excel to string representation
|
102 |
+
elif file_extension.lower() == ".mp3":
|
103 |
+
content = "Audio file provided. Unable to directly process audio. Consider using a transcription service if available."
|
104 |
+
elif file_extension.lower() == ".png":
|
105 |
+
content = "Image file provided. Unable to directly process images. Consider using an OCR or image analysis service if available."
|
106 |
+
else:
|
107 |
+
content = f"Unsupported file type: {file_extension}. Only .txt, .py, and .xlsx files are fully supported for reading content."
|
108 |
+
return {"file_content": content, "file_name": file_path}
|
109 |
+
except FileNotFoundError:
|
110 |
+
return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
|
111 |
+
except Exception as e:
|
112 |
+
return {"file_error": f"Error reading file {file_path}: {e}"}
|
113 |
+
|
114 |
+
@tool
|
115 |
+
def python_interpreter(code: str) -> Dict[str, str]:
|
116 |
+
"""
|
117 |
+
Executes Python code and returns its standard output.
|
118 |
+
If there's an error during execution, it returns the error message.
|
119 |
+
"""
|
120 |
+
old_stdout = io.StringIO()
|
121 |
+
# Redirect stdout to capture print statements
|
122 |
+
with contextlib.redirect_stdout(old_stdout):
|
123 |
+
try:
|
124 |
+
# Create a dictionary to hold the execution scope for exec
|
125 |
+
exec_globals = {}
|
126 |
+
exec_locals = {}
|
127 |
+
exec(code, exec_globals, exec_locals)
|
128 |
+
output = old_stdout.getvalue()
|
129 |
+
return {"execution_result": output.strip()}
|
130 |
+
except Exception as e:
|
131 |
+
return {"execution_error": str(e)}
|
132 |
+
|
133 |
+
|
134 |
API_KEY = os.getenv("GEMINI_API_KEY")
|
135 |
HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN")
|
136 |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
|
|
139 |
tools = [
|
140 |
multiply, add, subtract, divide, modulus,
|
141 |
wiki_search, web_search, arvix_search,
|
142 |
+
read_file_content, # Added new tool
|
143 |
+
python_interpreter, # Added new tool
|
144 |
]
|
145 |
|
146 |
|
|
|
157 |
temperature=1.0,
|
158 |
max_retries=2,
|
159 |
api_key=GEMINI_API_KEY,
|
160 |
+
max_tokens=5000
|
161 |
)
|
162 |
|
|
|
163 |
elif provider == "huggingface":
|
164 |
llm = ChatHuggingFace(
|
165 |
llm=HuggingFaceEndpoint(
|
|
|
186 |
return builder.compile()
|
187 |
|
188 |
if __name__ == "__main__":
|
189 |
+
# This block is intentionally left empty as per user request to remove examples.
|
190 |
+
# Your agent will interact with the graph by invoking it with messages.
|
191 |
+
pass
|
192 |
+
|