Update langgraph_agent.py
Browse files- langgraph_agent.py +57 -27
langgraph_agent.py
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
import os
|
2 |
import io
|
3 |
import contextlib
|
4 |
-
import pandas as pd
|
5 |
-
from typing import Dict, List, Union
|
|
|
|
|
|
|
|
|
6 |
|
7 |
from langgraph.graph import START, StateGraph, MessagesState
|
8 |
from langgraph.prebuilt import tools_condition, ToolNode
|
@@ -45,23 +49,22 @@ def modulus(a: int, b: int) -> int:
|
|
45 |
def wiki_search(query: str) -> dict:
|
46 |
"""Search Wikipedia for a query and return up to 2 documents."""
|
47 |
try:
|
48 |
-
docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load()
|
49 |
if not docs:
|
50 |
return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
|
51 |
formatted = "\n\n---\n\n".join(
|
52 |
-
f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
|
53 |
for d in docs
|
54 |
)
|
55 |
return {"wiki_results": formatted}
|
56 |
except Exception as e:
|
57 |
-
# Log the full error for debugging if possible
|
58 |
print(f"Error in wiki_search tool: {e}")
|
59 |
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
|
60 |
|
61 |
@tool
|
62 |
def web_search(query: str) -> dict:
|
63 |
"""Perform a web search (via Tavily) and return up to 3 results."""
|
64 |
-
try:
|
65 |
docs = TavilySearchResults(max_results=3).invoke(query=query)
|
66 |
formatted = "\n\n---\n\n".join(
|
67 |
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content}'
|
@@ -82,30 +85,40 @@ def arvix_search(query: str) -> dict:
|
|
82 |
)
|
83 |
return {"arvix_results": formatted}
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
@tool
|
86 |
def read_file_content(file_path: str) -> Dict[str, str]:
|
87 |
"""
|
88 |
-
Reads the content of a file and returns
|
89 |
-
|
90 |
-
For other file types, returns a message indicating limited support.
|
91 |
"""
|
92 |
try:
|
93 |
_, file_extension = os.path.splitext(file_path)
|
94 |
-
|
95 |
-
|
|
|
96 |
with open(file_path, "r", encoding="utf-8") as f:
|
97 |
content = f.read()
|
98 |
-
|
99 |
-
|
100 |
df = pd.read_excel(file_path)
|
101 |
-
content = df.to_string()
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
106 |
else:
|
107 |
-
|
108 |
-
return {"file_content": content, "file_name": file_path}
|
109 |
except FileNotFoundError:
|
110 |
return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
|
111 |
except Exception as e:
|
@@ -118,10 +131,8 @@ def python_interpreter(code: str) -> Dict[str, str]:
|
|
118 |
If there's an error during execution, it returns the error message.
|
119 |
"""
|
120 |
old_stdout = io.StringIO()
|
121 |
-
# Redirect stdout to capture print statements
|
122 |
with contextlib.redirect_stdout(old_stdout):
|
123 |
try:
|
124 |
-
# Create a dictionary to hold the execution scope for exec
|
125 |
exec_globals = {}
|
126 |
exec_locals = {}
|
127 |
exec(code, exec_globals, exec_locals)
|
@@ -130,6 +141,24 @@ def python_interpreter(code: str) -> Dict[str, str]:
|
|
130 |
except Exception as e:
|
131 |
return {"execution_error": str(e)}
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
API_KEY = os.getenv("GEMINI_API_KEY")
|
135 |
HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN")
|
@@ -139,8 +168,10 @@ GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
|
139 |
tools = [
|
140 |
multiply, add, subtract, divide, modulus,
|
141 |
wiki_search, web_search, arvix_search,
|
142 |
-
read_file_content,
|
143 |
-
python_interpreter,
|
|
|
|
|
144 |
]
|
145 |
|
146 |
|
@@ -153,7 +184,7 @@ def build_graph(provider: str = "gemini"):
|
|
153 |
"""Build the LangGraph agent with chosen LLM (default: Gemini)."""
|
154 |
if provider == "gemini":
|
155 |
llm = ChatGoogleGenerativeAI(
|
156 |
-
model= "gemini-
|
157 |
temperature=1.0,
|
158 |
max_retries=2,
|
159 |
api_key=GEMINI_API_KEY,
|
@@ -168,7 +199,7 @@ def build_graph(provider: str = "gemini"):
|
|
168 |
temperature=0,
|
169 |
)
|
170 |
else:
|
171 |
-
raise ValueError("Invalid provider. Choose '
|
172 |
|
173 |
llm_with_tools = llm.bind_tools(tools)
|
174 |
|
@@ -189,4 +220,3 @@ if __name__ == "__main__":
|
|
189 |
# This block is intentionally left empty as per user request to remove examples.
|
190 |
# Your agent will interact with the graph by invoking it with messages.
|
191 |
pass
|
192 |
-
|
|
|
1 |
import os
|
2 |
import io
|
3 |
import contextlib
|
4 |
+
import pandas as pd
|
5 |
+
from typing import Dict, List, Union
|
6 |
+
|
7 |
+
# New imports for image and audio processing
|
8 |
+
from PIL import Image as PILImage # Used for type checking/potential future local processing
|
9 |
+
from huggingface_hub import InferenceClient
|
10 |
|
11 |
from langgraph.graph import START, StateGraph, MessagesState
|
12 |
from langgraph.prebuilt import tools_condition, ToolNode
|
|
|
49 |
def wiki_search(query: str) -> dict:
|
50 |
"""Search Wikipedia for a query and return up to 2 documents."""
|
51 |
try:
|
52 |
+
docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load()
|
53 |
if not docs:
|
54 |
return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
|
55 |
formatted = "\n\n---\n\n".join(
|
56 |
+
f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
|
57 |
for d in docs
|
58 |
)
|
59 |
return {"wiki_results": formatted}
|
60 |
except Exception as e:
|
|
|
61 |
print(f"Error in wiki_search tool: {e}")
|
62 |
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
|
63 |
|
64 |
@tool
|
65 |
def web_search(query: str) -> dict:
|
66 |
"""Perform a web search (via Tavily) and return up to 3 results."""
|
67 |
+
try:
|
68 |
docs = TavilySearchResults(max_results=3).invoke(query=query)
|
69 |
formatted = "\n\n---\n\n".join(
|
70 |
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content}'
|
|
|
85 |
)
|
86 |
return {"arvix_results": formatted}
|
87 |
|
88 |
+
# Initialize Hugging Face Inference Client
|
89 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
90 |
+
HF_INFERENCE_CLIENT = None
|
91 |
+
if HF_API_TOKEN:
|
92 |
+
HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
|
93 |
+
else:
|
94 |
+
print("WARNING: HF_API_TOKEN not set. Image tools will not function.")
|
95 |
+
|
96 |
@tool
|
97 |
def read_file_content(file_path: str) -> Dict[str, str]:
|
98 |
"""
|
99 |
+
Reads the content of a file and returns its primary information.
|
100 |
+
For text/code/excel, returns content. For media, returns a prompt to use specific tools.
|
|
|
101 |
"""
|
102 |
try:
|
103 |
_, file_extension = os.path.splitext(file_path)
|
104 |
+
file_extension = file_extension.lower()
|
105 |
+
|
106 |
+
if file_extension in (".txt", ".py"):
|
107 |
with open(file_path, "r", encoding="utf-8") as f:
|
108 |
content = f.read()
|
109 |
+
return {"file_type": "text/code", "file_name": file_path, "file_content": content}
|
110 |
+
elif file_extension == ".xlsx":
|
111 |
df = pd.read_excel(file_path)
|
112 |
+
content = df.to_string()
|
113 |
+
return {"file_type": "excel", "file_name": file_path, "file_content": content}
|
114 |
+
elif file_extension in (".jpeg", ".jpg", ".png"):
|
115 |
+
# Indicate that it's an image and needs to be described by a specific tool
|
116 |
+
return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. Use 'describe_image' tool to get a textual description."}
|
117 |
+
elif file_extension == ".mp3":
|
118 |
+
# Indicate that it's an audio file and the LLM should process it natively
|
119 |
+
return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. The LLM should process this natively."}
|
120 |
else:
|
121 |
+
return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3 files are recognized."}
|
|
|
122 |
except FileNotFoundError:
|
123 |
return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
|
124 |
except Exception as e:
|
|
|
131 |
If there's an error during execution, it returns the error message.
|
132 |
"""
|
133 |
old_stdout = io.StringIO()
|
|
|
134 |
with contextlib.redirect_stdout(old_stdout):
|
135 |
try:
|
|
|
136 |
exec_globals = {}
|
137 |
exec_locals = {}
|
138 |
exec(code, exec_globals, exec_locals)
|
|
|
141 |
except Exception as e:
|
142 |
return {"execution_error": str(e)}
|
143 |
|
144 |
+
@tool
|
145 |
+
def describe_image(image_path: str) -> Dict[str, str]:
|
146 |
+
"""
|
147 |
+
Generates a textual description for an image file (JPEG, JPG, PNG) using an image-to-text model
|
148 |
+
from the Hugging Face Inference API. Requires HF_API_TOKEN environment variable to be set.
|
149 |
+
"""
|
150 |
+
if not HF_INFERENCE_CLIENT:
|
151 |
+
return {"error": "Hugging Face API token not configured for image description. Cannot use this tool."}
|
152 |
+
try:
|
153 |
+
with open(image_path, "rb") as f:
|
154 |
+
image_bytes = f.read()
|
155 |
+
description = HF_INFERENCE_CLIENT.image_to_text(image_bytes)
|
156 |
+
return {"image_description": description, "image_path": image_path}
|
157 |
+
except FileNotFoundError:
|
158 |
+
return {"error": f"Image file not found: {image_path}. Please ensure the file exists."}
|
159 |
+
except Exception as e:
|
160 |
+
return {"error": f"Error describing image {image_path}: {str(e)}"}
|
161 |
+
|
162 |
|
163 |
API_KEY = os.getenv("GEMINI_API_KEY")
|
164 |
HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN")
|
|
|
168 |
tools = [
|
169 |
multiply, add, subtract, divide, modulus,
|
170 |
wiki_search, web_search, arvix_search,
|
171 |
+
read_file_content,
|
172 |
+
python_interpreter,
|
173 |
+
describe_image, # Added new tool
|
174 |
+
# transcribe_audio, # Removed as per user request
|
175 |
]
|
176 |
|
177 |
|
|
|
184 |
"""Build the LangGraph agent with chosen LLM (default: Gemini)."""
|
185 |
if provider == "gemini":
|
186 |
llm = ChatGoogleGenerativeAI(
|
187 |
+
model= "gemini-1.5-flash-preview-05-20", # This model is capable of native audio processing
|
188 |
temperature=1.0,
|
189 |
max_retries=2,
|
190 |
api_key=GEMINI_API_KEY,
|
|
|
199 |
temperature=0,
|
200 |
)
|
201 |
else:
|
202 |
+
raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")
|
203 |
|
204 |
llm_with_tools = llm.bind_tools(tools)
|
205 |
|
|
|
220 |
# This block is intentionally left empty as per user request to remove examples.
|
221 |
# Your agent will interact with the graph by invoking it with messages.
|
222 |
pass
|
|