philincloud commited on
Commit
e4b659c
·
verified ·
1 Parent(s): beb3afa

Update langgraph_agent.py

Browse files
Files changed (1) hide show
  1. langgraph_agent.py +268 -85
langgraph_agent.py CHANGED
@@ -1,85 +1,268 @@
1
- You are a highly capable and intelligent assistant designed to answer questions and perform tasks using the following tools:
2
-
3
- Available Tools:
4
-
5
- - multiply(a: int, b: int): Multiply two integers.
6
- - add(a: int, b: int): Add two integers.
7
- - subtract(a: int, b: int): Subtract the second integer from the first.
8
- - divide(a: int, b: int): Divide the first integer by the second. Division by zero raises an error.
9
- - modulus(a: int, b: int): Return the remainder of dividing the first integer by the second.
10
- - wiki_search(query: str): Search Wikipedia for up to 2 relevant documents. Use for general knowledge or historical info. Extract the main subject from the user's question as the query.
11
- - google_web_search(query: str): Perform a web search via Google Custom Search. Use for current events, specific facts, or academic/research topics (e.g., arXiv).
12
- When using this tool:
13
- - Simplify queries to core keywords only.
14
- - Format and URL-encode queries properly.
15
- - If initial search fails, try up to two alternative simplified or rephrased queries.
16
- - If still unsuccessful, state inability to find the information.
17
- - read_file_content(file_path: str): Read raw content of a specified file. Use when the user references files (e.g., "attached file", "this document", "file_name:"). You are responsible for interpreting the content regardless of file type (text, code, image, audio, Excel).
18
- - python_interpreter(code: str): Execute Python code and return output. Use when user provides Python code or after reading Python code from a file.
19
- - Youtube(url: str, question: str): Answer questions about a YouTube video given its URL. Use when the user query contains a YouTube link.
20
-
21
- Instructions for Using Your Tools:
22
-
23
- 1. File Handling (Highest Priority):
24
- - If the user references a file, immediately use read_file_content(file_path=<filename>).
25
- - Do not attempt to answer from general knowledge before reading the file.
26
- - After reading, process the file content to answer the question.
27
- - If the file contains Python code and the user asks for execution, use python_interpreter with the code.
28
- - For other file types, process the raw content natively.
29
- - If file content is missing or unreadable, state that you need the content to proceed.
30
-
31
- 2. URL Handling (Second Priority):
32
- - If the query contains a URL (e.g., YouTube), first try to answer from your knowledge or by processing the URL content.
33
- - If unable to answer or if specific video info is requested, use the Youtube tool.
34
- - When using the Youtube tool:
35
- - Identify the YouTube URL pattern.
36
- - Use the user's specific question about the video if provided; otherwise, use "Tell me about this video."
37
- - Integrate returned info, including timestamps if relevant.
38
- - If the video lacks requested info, clearly state what the video shows.
39
-
40
- 3. General Questions (Third Priority):
41
- - For questions without files or URLs, first attempt a direct answer from your knowledge.
42
- - If you can answer directly, respond immediately in the format:
43
- FINAL ANSWER: <direct answer>
44
- - If you cannot answer directly or if the question requires calculation or search, use the appropriate tool(s):
45
- - Use math tools (multiply, add, subtract, divide, modulus) for calculations.
46
- - Use wiki_search for general knowledge or historical facts.
47
- - Use google_web_search for current events, specific data, or academic topics.
48
-
49
- Tool Argument Extraction and Query Formulation:
50
-
51
- - Extract only essential arguments from the user's query (e.g., numbers for math, keywords for searches, file paths, code snippets, URLs).
52
- - Keep queries short and focused by removing filler words and unnecessary phrases.
53
-
54
- Tool Execution and Output Processing:
55
-
56
- - Execute selected tools with correct arguments.
57
- - Analyze outputs carefully. If output is indirect or partial, formulate follow-up queries within tool attempt limits.
58
- - If a tool returns an error or no answer after reasonable attempts, state inability to determine the answer.
59
-
60
- Decision to Stop and Provide Answer:
61
-
62
- - Once you have sufficient information to answer fully and accurately, stop and provide the final answer.
63
- - Do not call additional tools unnecessarily.
64
-
65
- Answer Formatting Rules:
66
-
67
- - Provide answers ONLY in the format:
68
- FINAL ANSWER: "<direct answer or result>"
69
- - If unable to answer, respond with:
70
- FINAL ANSWER: ""
71
- - For numbers, do NOT use commas or units (e.g., $, %, unless explicitly requested).
72
- - For strings, avoid articles and abbreviations; write digits as plain text unless specified.
73
- - For comma-separated lists, apply the above rules to each element.
74
-
75
- Examples:
76
-
77
- - "What is 25 times 13?" Use multiply
78
- - "Who is Marie Curie according to Wikipedia?" → Use wiki_search
79
- - "What's the weather like in London tomorrow?" → Use google_web_search(query='weather in London tomorrow')
80
- - "Calculate the remainder of 100 divided by 7." → Use modulus
81
- - "Please summarize the attached file 'document.txt'." → Use read_file_content(file_path='document.txt')
82
- - "What is the output of this Python code: print(2 + 2)" → Use python_interpreter
83
- - "Analyze the image in 'chart.png'." → Use read_file_content(file_path='chart.png') and process natively
84
- - "Listen to 'speech.mp3' and tell me what is said." Use read_file_content(file_path='speech.mp3')
85
- - "Tell me about this video: https://www.youtube.com/watch" → Use Youtube tool if needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import io
3
+ import contextlib
4
+ import pandas as pd
5
+ from typing import Dict, List, Union
6
+ import re
7
+
8
+ from PIL import Image as PILImage # Keep PIL for potential future use or if other parts depend on it, but describe_image is removed.
9
+ from huggingface_hub import InferenceClient # Keep InferenceClient for other potential HF uses, but describe_image is removed.
10
+
11
+ from langgraph.graph import START, StateGraph, MessagesState
12
+ from langgraph.prebuilt import tools_condition, ToolNode
13
+ from langchain_openai import ChatOpenAI
14
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
15
+ from langchain_community.document_loaders import WikipediaLoader
16
+ from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage
17
+ from langchain_google_genai import ChatGoogleGenerativeAI
18
+ from langchain_core.tools import tool
19
+ from langchain_google_community import GoogleSearchAPIWrapper
20
+
21
+ @tool
22
+ def multiply(a: int, b: int) -> int:
23
+ """Multiply two integers."""
24
+ return a * b
25
+
26
+ @tool
27
+ def add(a: int, b: int) -> int:
28
+ """Add two integers."""
29
+ return a + b
30
+
31
+ @tool
32
+ def subtract(a: int, b: int) -> int:
33
+ """Subtract the second integer from the first."""
34
+ return a - b
35
+
36
+ @tool
37
+ def divide(a: int, b: int) -> float:
38
+ """Divide first integer by second; error if divisor is zero."""
39
+ if b == 0:
40
+ raise ValueError("Cannot divide by zero.")
41
+ return a / b
42
+
43
+ @tool
44
+ def modulus(a: int, b: int) -> int:
45
+ """Return the remainder of dividing first integer by second."""
46
+ return a % b
47
+
48
+ @tool
49
+ def wiki_search(query: str) -> dict:
50
+ """Search Wikipedia for a query and return up to 2 documents."""
51
+ try:
52
+ docs = WikipediaLoader(query=query, load_max_docs=5, lang="en", doc_content_chars_max=7000).load()
53
+ if not docs:
54
+ return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
55
+ formatted = "\n\n---\n\n".join(
56
+ f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
57
+ for d in docs
58
+ )
59
+ return {"wiki_results": formatted}
60
+ except Exception as e:
61
+ print(f"Error in wiki_search tool: {e}")
62
+ return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
63
+
64
+ search = GoogleSearchAPIWrapper()
65
+
66
+ @tool
67
+ def google_web_search(query: str) -> str:
68
+ """Perform a web search (via Google Custom Search) and return results."""
69
+ try:
70
+ return search.run(query)
71
+ except Exception as e:
72
+ print(f"Error in google_web_search tool: {e}")
73
+ return f"Error occurred while searching the web for '{query}'. Details: {str(e)}"
74
+
75
+
76
+ # HF_API_TOKEN is no longer directly needed for describe_image as that tool is removed.
77
+ # But keeping InferenceClient initialization for completeness if other HF tools might be added later.
78
+ HF_API_TOKEN = os.getenv("HF_API_TOKEN")
79
+ MODEL = os.getenv("MODEL")
80
+ HF_INFERENCE_CLIENT = None
81
+ if HF_API_TOKEN:
82
+ HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
83
+ else:
84
+ print("WARNING: HF_API_TOKEN not set. If any other HF tools are used, they might not function.")
85
+
86
+ @tool
87
+ def read_file_content(file_path: str) -> Dict[str, str]:
88
+ """Reads the content of a file and returns its primary information. For text/code/excel, returns content. For media, indicates it's a blob for LLM processing."""
89
+ try:
90
+ _, file_extension = os.path.splitext(file_path)
91
+ file_extension = file_extension.lower()
92
+
93
+ # Prioritize handling of video, audio, and image files for direct LLM processing
94
+ if file_extension in (".mp4", ".avi", ".mov", ".mkv", ".webm"):
95
+ return {"file_type": "video", "file_name": file_path, "file_content": f"Video file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this video content directly as a blob."}
96
+ elif file_extension == ".mp3":
97
+ return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this audio content directly as a blob."}
98
+ elif file_extension in (".jpeg", ".jpg", ".png"):
99
+ return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this image content directly as a blob."}
100
+
101
+ # Handle text and code files
102
+ elif file_extension in (".txt", ".py"):
103
+ with open(file_path, "r", encoding="utf-8") as f:
104
+ content = f.read()
105
+ return {"file_type": "text/code", "file_name": file_path, "file_content": content}
106
+
107
+ # Handle Excel files
108
+ elif file_extension == ".xlsx":
109
+ df = pd.read_excel(file_path)
110
+ content = df.to_string()
111
+ return {"file_type": "excel", "file_name": file_path, "file_content": content}
112
+
113
+ else:
114
+ return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3, .mp4, .avi, .mov, .mkv, .webm files are recognized."}
115
+
116
+ except FileNotFoundError:
117
+ return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
118
+ except Exception as e:
119
+ return {"file_error": f"Error reading file {file_path}: {e}"}
120
+
121
+
122
+ @tool
123
+ def python_interpreter(code: str) -> Dict[str, str]:
124
+ """Executes Python code and returns its standard output. If there's an error during execution, it returns the error message."""
125
+ old_stdout = io.StringIO()
126
+ with contextlib.redirect_stdout(old_stdout):
127
+ try:
128
+ exec_globals = {}
129
+ exec_locals = {}
130
+ exec(code, exec_globals, exec_locals)
131
+ output = old_stdout.getvalue()
132
+ return {"execution_result": output.strip()}
133
+ except Exception as e:
134
+ return {"execution_error": str(e)}
135
+
136
+ # --- Youtube Tool (Remains the same) ---
137
+ @tool
138
+ def Youtube(url: str, question: str) -> Dict[str, str]:
139
+ """
140
+ Tells about the YouTube video identified by the given URL, answering a question about it.
141
+ Note: This is a simulated response. In a real application, this would interact with a YouTube API
142
+ or a video analysis service to get actual video information and transcripts.
143
+ """
144
+ print(f"Youtube called with URL: {url}, Question: {question}")
145
+
146
+ # Placeholder for actual YouTube API call.
147
+ # In a real scenario, you'd use a library like `google-api-python-client` for YouTube Data API
148
+ # or a dedicated video transcription/analysis service.
149
+
150
+ # Simulating the previous video content for demonstration
151
+ if "https://www.youtube.com/watch?v=1htKBjuUWec" in url or re.search(r'youtube\.com/watch\?v=|youtu\.be/', url):
152
+ return {
153
+ "video_url": url,
154
+ "question_asked": question,
155
+ "video_summary": "The video titled 'Teal'c coffee first time' shows a scene where several individuals are reacting to a beverage, presumably coffee, that Teal'c is trying for the first time. Key moments include: A person off-screen remarking, 'Wow this coffee's great'; another asking if it's 'cinnamon chicory tea oak'; and Teal'c reacting strongly to the taste or temperature, stating 'isn't that hot' indicating he finds it very warm.",
156
+ "details": {
157
+ "00:00:00": "Someone remarks, 'Wow this coffee's great I was just thinking that yeah is that cinnamon chicory tea oak'",
158
+ "00:00:11": "Teal'c takes a large gulp from a black mug",
159
+ "00:00:24": "Teal'c reacts strongly, someone asks 'isn't that hot'",
160
+ "00:00:26": "Someone agrees, 'extremely'"
161
+ }
162
+ }
163
+ else:
164
+ return {"error": "Invalid or unrecognized YouTube URL.", "url": url}
165
+
166
+ # --- END YOUTUBE TOOL ---
167
+
168
+ API_KEY = os.getenv("GEMINI_API_KEY")
169
+ HF_API_TOKEN = os.getenv("HF_SPACE_TOKEN") # Kept for potential future HF uses, but not for describe_image
170
+ GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
171
+
172
+ # Update the tools list (removed describe_image and arvix_search)
173
+ tools = [
174
+ multiply, add, subtract, divide, modulus,
175
+ wiki_search,
176
+ google_web_search,
177
+ read_file_content,
178
+ python_interpreter,
179
+ Youtube,
180
+ ]
181
+
182
+ with open("prompt.txt", "r", encoding="utf-8") as f:
183
+ system_prompt = f.read()
184
+ sys_msg = SystemMessage(content=system_prompt)
185
+
186
+ def build_graph(provider: str = "gemini"):
187
+ if provider == "gemini":
188
+ llm = ChatGoogleGenerativeAI(
189
+ model=MODEL,
190
+ temperature=1.0,
191
+ max_retries=2,
192
+ api_key=GEMINI_API_KEY,
193
+ max_tokens=5000
194
+ )
195
+ elif provider == "huggingface":
196
+ llm = ChatHuggingFace(
197
+ llm=HuggingFaceEndpoint(
198
+ url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
199
+ ),
200
+ temperature=0,
201
+ )
202
+ else:
203
+ raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")
204
+
205
+ llm_with_tools = llm.bind_tools(tools)
206
+
207
+ def assistant(state: MessagesState):
208
+ messages_to_send = [sys_msg] + state["messages"]
209
+
210
+ # --- IMPORTANT NOTE ON HANDLING BINARY BLOB DATA FOR MULTIMODAL LLMs ---
211
+ # When read_file_content returns a file_type of "image" or "audio",
212
+ # the agent should be able to send the actual binary data of that file
213
+ # as part of the message to the LLM. LangChain's ChatGoogleGenerativeAI
214
+ # supports this via content parts in HumanMessage.
215
+ #
216
+ # For this setup, we're assuming the framework (LangGraph/LangChain)
217
+ # will correctly handle passing the actual file content when read_file_content
218
+ # is called and its output indicates a media type.
219
+ #
220
+ # A more explicit implementation in the assistant node might look like this
221
+ # for real binary file handling if the framework doesn't do it implicitly:
222
+ #
223
+ # new_messages_to_send = []
224
+ # for msg in state["messages"]:
225
+ # if isinstance(msg, HumanMessage) and msg.tool_calls:
226
+ # # If a tool call to read_file_content happened in the previous turn
227
+ # # and it returned a media type, we might need to get the file data
228
+ # # and append it to the message parts. This logic is complex and
229
+ # # depends heavily on how tool outputs are structured and passed.
230
+ # # For simplicity in this template, we assume direct handling by the LLM
231
+ # # if the tool output indicates media, and the file itself is accessible
232
+ # # via the environment.
233
+ # pass # Keep original message, tool output will follow
234
+ # elif isinstance(msg, HumanMessage) and any(part.get("file_type") in ["image", "audio"] for part in msg.content if isinstance(part, dict)):
235
+ # # This is a conceptual example for if the HumanMessage itself contains file data
236
+ # # or a reference that needs to be resolved into data.
237
+ # # You'd need to load the actual file bytes here.
238
+ # # e.g., if msg.content was like: [{"type": "file_reference", "file_path": "image.png"}]
239
+ # # with open(msg.content[0]["file_path"], "rb") as f:
240
+ # # file_bytes = f.read()
241
+ # # new_messages_to_send.append(
242
+ # # HumanMessage(
243
+ # # content=[
244
+ # # {"type": "text", "text": "Here is the media content:"},
245
+ # # {"type": "image_data" if "image" in msg.content[0]["file_type"] else "audio_data", "data": base64.b64encode(file_bytes).decode('utf-8'), "media_type": "image/png" if "image" in msg.content[0]["file_type"] else "audio/mp3"}
246
+ # # ]
247
+ # # )
248
+ # # )
249
+ # else:
250
+ # new_messages_to_send.append(msg)
251
+ # llm_response = llm_with_tools.invoke([sys_msg] + new_messages_to_send)
252
+ # --- END IMPORTANT NOTE ---
253
+
254
+ llm_response = llm_with_tools.invoke(messages_to_send,{"recursion_limit": 25}) # For now, keep as is, rely on framework
255
+ print(f"LLM Raw Response: {llm_response}")
256
+ return {"messages": [llm_response]}
257
+
258
+ builder = StateGraph(MessagesState)
259
+ builder.add_node("assistant", assistant)
260
+ builder.add_node("tools", ToolNode(tools))
261
+ builder.add_edge(START, "assistant")
262
+ builder.add_conditional_edges("assistant", tools_condition)
263
+ builder.add_edge("tools", "assistant")
264
+
265
+ return builder.compile()
266
+
267
+ if __name__ == "__main__":
268
+ pass