import os import io import contextlib import pandas as pd # Added for Excel file handling from typing import Dict, List, Union # Added for type hinting from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_openai import ChatOpenAI from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_core.messages import SystemMessage, HumanMessage from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.tools import tool @tool def multiply(a: int, b: int) -> int: """Multiply two integers.""" return a * b @tool def add(a: int, b: int) -> int: """Add two integers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract the second integer from the first.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide first integer by second; error if divisor is zero.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Return the remainder of dividing first integer by second.""" return a % b @tool def wiki_search(query: str) -> dict: """Search Wikipedia for a query and return up to 2 documents.""" try: docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load() # Added lang="en" for clarity if not docs: return {"wiki_results": f"No documents found on Wikipedia for '{query}'."} formatted = "\n\n---\n\n".join( f'\n{d.page_content}' # Added .get for safety for d in docs ) return {"wiki_results": formatted} except Exception as e: # Log the full error for debugging if possible print(f"Error in wiki_search tool: {e}") return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"} @tool def web_search(query: str) -> dict: """Perform a web search (via Tavily) and return up to 3 results.""" try: # Added try-except block for robustness docs = TavilySearchResults(max_results=3).invoke(query=query) formatted = "\n\n---\n\n".join( f'\n{d.page_content}' for d in docs ) return {"web_results": formatted} except Exception as e: print(f"Error in web_search tool: {e}") return {"web_results": f"Error occurred while searching the web for '{query}'. Details: {str(e)}"} @tool def arvix_search(query: str) -> dict: """Search arXiv for a query and return up to 3 paper excerpts.""" docs = ArxivLoader(query=query, load_max_docs=3).load() formatted = "\n\n---\n\n".join( f'\n{d.page_content[:1000]}' for d in docs ) return {"arvix_results": formatted} @tool def read_file_content(file_path: str) -> Dict[str, str]: """ Reads the content of a file and returns it. Supports text (.txt), Python (.py), and Excel (.xlsx) files. For other file types, returns a message indicating limited support. """ try: _, file_extension = os.path.splitext(file_path) content = "" if file_extension.lower() in (".txt", ".py"): with open(file_path, "r", encoding="utf-8") as f: content = f.read() elif file_extension.lower() == ".xlsx": # Ensure pandas is installed for this. df = pd.read_excel(file_path) content = df.to_string() # Convert Excel to string representation elif file_extension.lower() == ".mp3": content = "Audio file provided. Unable to directly process audio. Consider using a transcription service if available." elif file_extension.lower() == ".png": content = "Image file provided. Unable to directly process images. Consider using an OCR or image analysis service if available." else: content = f"Unsupported file type: {file_extension}. Only .txt, .py, and .xlsx files are fully supported for reading content." return {"file_content": content, "file_name": file_path} except FileNotFoundError: return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."} except Exception as e: return {"file_error": f"Error reading file {file_path}: {e}"} @tool def python_interpreter(code: str) -> Dict[str, str]: """ Executes Python code and returns its standard output. If there's an error during execution, it returns the error message. """ old_stdout = io.StringIO() # Redirect stdout to capture print statements with contextlib.redirect_stdout(old_stdout): try: # Create a dictionary to hold the execution scope for exec exec_globals = {} exec_locals = {} exec(code, exec_globals, exec_locals) output = old_stdout.getvalue() return {"execution_result": output.strip()} except Exception as e: return {"execution_error": str(e)} API_KEY = os.getenv("GEMINI_API_KEY") HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN") GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, read_file_content, # Added new tool python_interpreter, # Added new tool ] with open("prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) def build_graph(provider: str = "gemini"): """Build the LangGraph agent with chosen LLM (default: Gemini).""" if provider == "gemini": llm = ChatGoogleGenerativeAI( model= "gemini-2.5-flash-preview-05-20", temperature=1.0, max_retries=2, api_key=GEMINI_API_KEY, max_tokens=5000 ) elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", ), temperature=0, ) else: raise ValueError("Invalid provider. Choose 'openai' or 'huggingface'.") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): messages_to_send = [sys_msg] + state["messages"] return {"messages": [llm_with_tools.invoke(messages_to_send)]} builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() if __name__ == "__main__": # This block is intentionally left empty as per user request to remove examples. # Your agent will interact with the graph by invoking it with messages. pass