import os from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_openai import ChatOpenAI from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_core.messages import SystemMessage, HumanMessage from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.tools import tool @tool def multiply(a: int, b: int) -> int: """Multiply two integers.""" return a * b @tool def add(a: int, b: int) -> int: """Add two integers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract the second integer from the first.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide first integer by second; error if divisor is zero.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Return the remainder of dividing first integer by second.""" return a % b @tool def wiki_search(query: str) -> dict: """Search Wikipedia for a query and return up to 2 documents.""" docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted = "\n\n---\n\n".join( f'\n{d.page_content}' for d in docs ) return {"wiki_results": formatted} @tool def web_search(query: str) -> dict: """Perform a web search (via Tavily) and return up to 3 results.""" docs = TavilySearchResults(max_results=3).invoke(query=query) formatted = "\n\n---\n\n".join( f'\n{d.page_content}' for d in docs ) return {"web_results": formatted} @tool def arvix_search(query: str) -> dict: """Search arXiv for a query and return up to 3 paper excerpts.""" docs = ArxivLoader(query=query, load_max_docs=3).load() formatted = "\n\n---\n\n".join( f'\n{d.page_content[:1000]}' for d in docs ) return {"arvix_results": formatted} API_KEY = os.getenv("GEMINI_API_KEY") HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN") GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, ] with open("prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) def build_graph(provider: str = "openai"): """Build the LangGraph agent with chosen LLM (default: Gemini).""" if provider == "openai": lllm = ChatGoogleGenerativeAI( model= "gemini-2.5-pro-preview-05-06", temperature=1.0, max_retries=2, google_api_key=api_key, ) elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", ), temperature=0, ) else: raise ValueError("Invalid provider. Choose 'openai' or 'huggingface'.") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): return {"messages": [llm_with_tools.invoke(state["messages"])]} builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() if __name__ == "__main__": graph = build_graph() msgs = graph.invoke({"messages":[ HumanMessage(content="What’s the capital of France?") ]}) for m in msgs["messages"]: m.pretty_print()