import os from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_openai import ChatOpenAI from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool #tools @tool def multiply(a: int, b: int) -> int: return a * b @tool def add(a: int, b: int) -> int: return a + b @tool def subtract(a: int, b: int) -> int: return a - b @tool def divide(a: int, b: int) -> float: if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: return a % b @tool def wiki_search(query: str) -> dict: docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted = "\n\n---\n\n".join( f'\n{d.page_content}' for d in docs ) return {"wiki_results": formatted} @tool def web_search(query: str) -> dict: docs = TavilySearchResults(max_results=3).invoke(query=query) formatted = "\n\n---\n\n".join( f'\n{d.page_content}' for d in docs ) return {"web_results": formatted} @tool def arvix_search(query: str) -> dict: docs = ArxivLoader(query=query, load_max_docs=3).load() formatted = "\n\n---\n\n".join( f'\n{d.page_content[:1000]}' for d in docs ) return {"arvix_results": formatted} OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN") # ─────────────────────────────────────────────────────────────────────────────── # 4) Assemble tool list tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, ] # ─────────────────────────────────────────────────────────────────────────────── # 5) Load your system prompt with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) # ─────────────────────────────────────────────────────────────────────────────── def build_graph(provider: str = "openai"): """Build the LangGraph agent with chosen LLM (default: OpenAI).""" if provider == "openai": llm = ChatOpenAI( model_name="o4-mini-2025-04-16", openai_api_key=OPENAI_API_KEY, # no temperature override here ) elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", ), temperature=0, ) else: raise ValueError("Invalid provider. Choose 'openai' or 'huggingface'.") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): return {"messages": [llm_with_tools.invoke(state["messages"])]} builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() if __name__ == "__main__": graph = build_graph() msgs = graph.invoke({"messages":[ HumanMessage(content="What’s the capital of France?") ]}) for m in msgs["messages"]: m.pretty_print()