import os import io import contextlib import pandas as pd from typing import Dict, List, Union from PIL import Image as PILImage from huggingface_hub import InferenceClient from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_openai import ChatOpenAI from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_core.messages import SystemMessage, HumanMessage from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.tools import tool from langchain_google_community.tools.Google Search import GoogleSearchResults @tool def multiply(a: int, b: int) -> int: return a * b @tool def add(a: int, b: int) -> int: return a + b @tool def subtract(a: int, b: int) -> int: return a - b @tool def divide(a: int, b: int) -> float: if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: return a % b @tool def wiki_search(query: str) -> dict: try: docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load() if not docs: return {"wiki_results": f"No documents found on Wikipedia for '{query}'."} formatted = "\n\n---\n\n".join( f'\n{d.page_content}' for d in docs ) return {"wiki_results": formatted} except Exception as e: print(f"Error in wiki_search tool: {e}") return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"} Google Search_tool = GoogleSearchResults( api_key=os.getenv("GOOGLE_API_KEY"), engine_id=os.getenv("GOOGLE_CSE_ID") ) @tool def google_web_search(query: str) -> dict: try: docs = Google Search_tool.invoke(query) return {"google_web_results": docs} except Exception as e: print(f"Error in google_web_search tool: {e}") return {"google_web_results": f"Error occurred while searching the web for '{query}'. Details: {str(e)}"} @tool def arvix_search(query: str) -> dict: docs = ArxivLoader(query=query, load_max_docs=3).load() formatted = "\n\n---\n\n".join( f'\n{d.page_content[:1000]}' for d in docs ) return {"arvix_results": formatted} HF_API_TOKEN = os.getenv("HF_API_TOKEN") HF_INFERENCE_CLIENT = None if HF_API_TOKEN: HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN) else: print("WARNING: HF_API_TOKEN not set. Image and Audio tools will not function.") @tool def read_file_content(file_path: str) -> Dict[str, str]: try: _, file_extension = os.path.splitext(file_path) file_extension = file_extension.lower() if file_extension in (".txt", ".py"): with open(file_path, "r", encoding="utf-8") as f: content = f.read() return {"file_type": "text/code", "file_name": file_path, "file_content": content} elif file_extension == ".xlsx": df = pd.read_excel(file_path) content = df.to_string() return {"file_type": "excel", "file_name": file_path, "file_content": content} elif file_extension in (".jpeg", ".jpg", ".png"): return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. Use 'describe_image' tool to get a textual description."} elif file_extension == ".mp3": return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. Use 'transcribe_audio' tool to get the text transcription."} else: return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3 files are recognized."} except FileNotFoundError: return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."} except Exception as e: return {"file_error": f"Error reading file {file_path}: {e}"} @tool def python_interpreter(code: str) -> Dict[str, str]: old_stdout = io.StringIO() with contextlib.redirect_stdout(old_stdout): try: exec_globals = {} exec_locals = {} exec(code, exec_globals, exec_locals) output = old_stdout.getvalue() return {"execution_result": output.strip()} except Exception as e: return {"execution_error": str(e)} @tool def describe_image(image_path: str) -> Dict[str, str]: if not HF_INFERENCE_CLIENT: return {"error": "Hugging Face API token not configured for image description. Cannot use this tool."} try: with open(image_path, "rb") as f: image_bytes = f.read() description = HF_INFERENCE_CLIENT.image_to_text(image_bytes) return {"image_description": description, "image_path": image_path} except FileNotFoundError: return {"error": f"Image file not found: {image_path}. Please ensure the file exists."} except Exception as e: return {"error": f"Error describing image {image_path}: {str(e)}"} @tool def transcribe_audio(audio_path: str) -> Dict[str, str]: if not HF_INFERENCE_CLIENT: return {"error": "Hugging Face API token not configured for audio transcription. Cannot use this tool."} try: with open(audio_path, "rb") as f: audio_bytes = f.read() transcription = HF_INFERENCE_CLIENT.automatic_speech_recognition(audio_bytes) return {"audio_transcription": transcription, "audio_path": audio_path} except FileNotFoundError: return {"error": f"Audio file not found: {audio_path}. Please ensure the file exists."} except Exception as e: return {"error": f"Error transcribing audio {audio_path}: {str(e)}"} API_KEY = os.getenv("GEMINI_API_KEY") HF_API_TOKEN = os.getenv("HF_SPACE_TOKEN") GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") tools = [ multiply, add, subtract, divide, modulus, wiki_search, google_web_search, arvix_search, read_file_content, python_interpreter, describe_image, transcribe_audio, ] with open("prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) def build_graph(provider: str = "gemini"): if provider == "gemini": llm = ChatGoogleGenerativeAI( model="gemini-2.5-pro-preview-05-06", temperature=1.0, max_retries=2, api_key=GEMINI_API_KEY, max_tokens=5000 ) elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", ), temperature=0, ) else: raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): messages_to_send = [sys_msg] + state["messages"] llm_response = llm_with_tools.invoke(messages_to_send) print(f"LLM Raw Response: {llm_response}") return {"messages": [llm_response]} builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() if __name__ == "__main__": pass