import os import io import contextlib import pandas as pd from typing import Dict, List, Union import re from PIL import Image as PILImage # Keep PIL for potential future use or if other parts depend on it, but describe_image is removed. from huggingface_hub import InferenceClient # Keep InferenceClient for other potential HF uses, but describe_image is removed. from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_openai import ChatOpenAI from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint from langchain_community.document_loaders import WikipediaLoader from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.tools import tool from langchain_google_community import GoogleSearchAPIWrapper @tool def multiply(a: int, b: int) -> int: """Multiply two integers.""" return a * b @tool def add(a: int, b: int) -> int: """Add two integers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract the second integer from the first.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide first integer by second; error if divisor is zero.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Return the remainder of dividing first integer by second.""" return a % b @tool def wiki_search(query: str) -> dict: """Search Wikipedia for a query and return up to 2 documents.""" try: docs = WikipediaLoader(query=query, load_max_docs=5, lang="en", doc_content_chars_max=7000).load() if not docs: return {"wiki_results": f"No documents found on Wikipedia for '{query}'."} formatted = "\n\n---\n\n".join( f'\n{d.page_content}' for d in docs ) return {"wiki_results": formatted} except Exception as e: print(f"Error in wiki_search tool: {e}") return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"} search = GoogleSearchAPIWrapper() @tool def google_web_search(query: str) -> str: """Perform a web search (via Google Custom Search) and return results.""" try: return search.run(query) except Exception as e: print(f"Error in google_web_search tool: {e}") return f"Error occurred while searching the web for '{query}'. Details: {str(e)}" HF_API_TOKEN = os.getenv("HF_API_TOKEN") MODEL = os.getenv("MODEL") HF_INFERENCE_CLIENT = None if HF_API_TOKEN: HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN) else: print("WARNING: HF_API_TOKEN not set. If any other HF tools are used, they might not function.") @tool def read_file_content(file_path: str) -> Dict[str, str]: """Reads the content of a file and returns its primary information. For text/code/excel, returns content. For media, indicates it's a blob for LLM processing.""" try: _, file_extension = os.path.splitext(file_path) file_extension = file_extension.lower() # Prioritize handling of video, audio, and image files for direct LLM processing if file_extension in (".mp4", ".avi", ".mov", ".mkv", ".webm"): return {"file_type": "video", "file_name": file_path, "file_content": f"Video file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this video content directly as a blob."} elif file_extension == ".mp3": return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this audio content directly as a blob."} elif file_extension in (".jpeg", ".jpg", ".png"): return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this image content directly as a blob."} # Handle text and code files elif file_extension in (".txt", ".py"): with open(file_path, "r", encoding="utf-8") as f: content = f.read() return {"file_type": "text/code", "file_name": file_path, "file_content": content} # Handle Excel files elif file_extension == ".xlsx": df = pd.read_excel(file_path) content = df.to_string() return {"file_type": "excel", "file_name": file_path, "file_content": content} else: return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3, .mp4, .avi, .mov, .mkv, .webm files are recognized."} except FileNotFoundError: return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."} except Exception as e: return {"file_error": f"Error reading file {file_path}: {e}"} @tool def python_interpreter(code: str) -> Dict[str, str]: """Executes Python code and returns its standard output. If there's an error during execution, it returns the error message.""" old_stdout = io.StringIO() with contextlib.redirect_stdout(old_stdout): try: exec_globals = {} exec_locals = {} exec(code, exec_globals, exec_locals) output = old_stdout.getvalue() return {"execution_result": output.strip()} except Exception as e: return {"execution_error": str(e)} API_KEY = os.getenv("GEMINI_API_KEY") HF_API_TOKEN = os.getenv("HF_SPACE_TOKEN") # Kept for potential future HF uses, but not for describe_image GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") # Updated tools list without Youtube tools = [ multiply, add, subtract, divide, modulus, wiki_search, google_web_search, read_file_content, python_interpreter, ] with open("prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) def build_graph(provider: str = "gemini"): if provider == "gemini": llm = ChatGoogleGenerativeAI( model=MODEL, temperature=1.0, max_retries=2, api_key=GEMINI_API_KEY, max_tokens=5000 ) elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", ), temperature=0, ) else: raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): messages_to_send = [sys_msg] + state["messages"] llm_response = llm_with_tools.invoke(messages_to_send, {"recursion_limit": 25}) print(f"LLM Raw Response: {llm_response}") return {"messages": [llm_response]} builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() if __name__ == "__main__": pass