File size: 10,509 Bytes
79dcd91 b97bb7f 79dcd91 416b4ab 79dcd91 6a89149 79dcd91 949ae6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL, StableDiffusionUpscalePipeline
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import hf_hub_download
import os
import requests
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
# Performance optimizations
if hasattr(pipe, "enable_attention_slicing"):
pipe.enable_attention_slicing(1)
if hasattr(pipe, "enable_vae_slicing"):
pipe.enable_vae_slicing()
if hasattr(pipe, "enable_vae_tiling"):
pipe.enable_vae_tiling()
# Compile transformer for faster inference (if supported)
try:
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
print("✓ Transformer compiled for faster inference")
except Exception as e:
print(f"Warning: Could not compile transformer: {e}")
# Load upscaler pipeline with optimizations
upscaler = StableDiffusionUpscalePipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=dtype).to(device)
if hasattr(upscaler, "enable_attention_slicing"):
upscaler.enable_attention_slicing(1)
if hasattr(upscaler, "enable_vae_slicing"):
upscaler.enable_vae_slicing()
# Available LoRAs
LORAS = {
"None": None,
"AntiBlur": "Shakker-Labs/FLUX.1-dev-LoRA-AntiBlur",
"Add Details": "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
"Ultra Realism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/Canopus-LoRA-Flux-UltraRealism.safetensors",
"Face Realism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/Canopus-LoRA-Flux-FaceRealism.safetensors",
"Perfectionism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/perfection%20style%20v1.safetensors"
}
# Store loaded LoRA paths
loaded_loras = {}
def download_lora_from_url(url, filename):
"""Download LoRA file from direct URL"""
if not os.path.exists(filename):
print(f"Downloading {filename}...")
response = requests.get(url)
with open(filename, 'wb') as f:
f.write(response.content)
print(f"Downloaded {filename}")
return filename
def preload_and_apply_all_loras():
"""Download and apply all LoRAs simultaneously at startup"""
global loaded_loras
print("Downloading and applying all LoRAs...")
for lora_name, lora_path in LORAS.items():
if lora_name == "None" or lora_path is None:
continue
# Handle direct URL downloads
if lora_path.startswith('http'):
filename = f"{lora_name.lower().replace(' ', '_')}_lora.safetensors"
lora_path = download_lora_from_url(lora_path, filename)
loaded_loras[lora_name] = lora_path
print(f"Downloaded {lora_name}")
# Apply each LoRA with optimal scaling
try:
optimal_scale = get_optimal_lora_scale(lora_name)
pipe.load_lora_weights(lora_path, adapter_name=lora_name.lower().replace(' ', '_'))
print(f"Applied {lora_name} with scale {optimal_scale}")
except Exception as e:
print(f"Failed to apply {lora_name}: {e}")
print(f"All {len(loaded_loras)} LoRAs downloaded and applied!")
def get_optimal_lora_scale(lora_name):
"""Return optimal LoRA scale based on LoRA type for better quality/speed balance"""
lora_scales = {
"AntiBlur": 0.8, # Slightly lower for better balance
"Add Details": 1.2, # Higher for more detail enhancement
"Ultra Realism": 0.9, # Balanced for realism
"Face Realism": 1.1, # Optimized for facial features
}
return lora_scales.get(lora_name, 1.0)
# Download and apply all LoRAs at startup
preload_and_apply_all_loras()
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
@spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, enable_upscale=False, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# All LoRAs are already loaded and active
try:
final_img = None
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
final_img = img
yield img, seed
# Apply upscaling if enabled with optimized settings
if enable_upscale and final_img is not None:
try:
# Use fewer steps for faster upscaling with minimal quality loss
upscaled_img = upscaler(
prompt=prompt,
image=final_img,
num_inference_steps=15, # Reduced from 20 for speed
guidance_scale=6.0, # Slightly lower for faster convergence
generator=generator,
).images[0]
yield upscaled_img, seed
except Exception as e:
print(f"Error during upscaling: {e}")
yield final_img, seed
except Exception as e:
print(f"Error during generation: {e}")
# Fallback to basic generation
img = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
# Apply upscaling if enabled
if enable_upscale:
try:
img = upscaler(
prompt=prompt,
image=img,
num_inference_steps=20,
guidance_scale=7.5,
generator=generator,
).images[0]
except Exception as e:
print(f"Error during upscaling: {e}")
yield img, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
gr.Markdown("**LoRAs Active:** All LoRAs are loaded and active simultaneously")
enable_upscale = gr.Checkbox(
label="Enable 4x Upscaling",
value=False,
info="Upscale final image using Stable Diffusion 4x upscaler"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
info="Lower values = faster generation, higher values = more prompt adherence"
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=4,
maximum=50,
step=1,
value=20,
info="Lower values = faster generation, higher values = better quality"
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, enable_upscale],
outputs = [result, seed]
)
demo.launch(share=True) |