File size: 10,509 Bytes
79dcd91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b97bb7f
79dcd91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416b4ab
79dcd91
 
 
 
 
 
 
 
 
6a89149
 
 
 
79dcd91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
949ae6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL, StableDiffusionUpscalePipeline
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import hf_hub_download
import os
import requests

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)

# Performance optimizations

if hasattr(pipe, "enable_attention_slicing"):
    pipe.enable_attention_slicing(1)
if hasattr(pipe, "enable_vae_slicing"):
    pipe.enable_vae_slicing()
if hasattr(pipe, "enable_vae_tiling"):
    pipe.enable_vae_tiling()

# Compile transformer for faster inference (if supported)
try:
    pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
    print("✓ Transformer compiled for faster inference")
except Exception as e:
    print(f"Warning: Could not compile transformer: {e}")

# Load upscaler pipeline with optimizations
upscaler = StableDiffusionUpscalePipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=dtype).to(device)

if hasattr(upscaler, "enable_attention_slicing"):
    upscaler.enable_attention_slicing(1)
if hasattr(upscaler, "enable_vae_slicing"):
    upscaler.enable_vae_slicing()

# Available LoRAs
LORAS = {
    "None": None,
    "AntiBlur": "Shakker-Labs/FLUX.1-dev-LoRA-AntiBlur",
    "Add Details": "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
    "Ultra Realism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/Canopus-LoRA-Flux-UltraRealism.safetensors",
    "Face Realism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/Canopus-LoRA-Flux-FaceRealism.safetensors",
    "Perfectionism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/perfection%20style%20v1.safetensors"
}

# Store loaded LoRA paths
loaded_loras = {}

def download_lora_from_url(url, filename):
    """Download LoRA file from direct URL"""
    if not os.path.exists(filename):
        print(f"Downloading {filename}...")
        response = requests.get(url)
        with open(filename, 'wb') as f:
            f.write(response.content)
        print(f"Downloaded {filename}")
    return filename

def preload_and_apply_all_loras():
    """Download and apply all LoRAs simultaneously at startup"""
    global loaded_loras
    
    print("Downloading and applying all LoRAs...")
    
    for lora_name, lora_path in LORAS.items():
        if lora_name == "None" or lora_path is None:
            continue
            
        # Handle direct URL downloads
        if lora_path.startswith('http'):
            filename = f"{lora_name.lower().replace(' ', '_')}_lora.safetensors"
            lora_path = download_lora_from_url(lora_path, filename)
        
        loaded_loras[lora_name] = lora_path
        print(f"Downloaded {lora_name}")
        
        # Apply each LoRA with optimal scaling
        try:
            optimal_scale = get_optimal_lora_scale(lora_name)
            pipe.load_lora_weights(lora_path, adapter_name=lora_name.lower().replace(' ', '_'))
            print(f"Applied {lora_name} with scale {optimal_scale}")
        except Exception as e:
            print(f"Failed to apply {lora_name}: {e}")
    
    print(f"All {len(loaded_loras)} LoRAs downloaded and applied!")

def get_optimal_lora_scale(lora_name):
    """Return optimal LoRA scale based on LoRA type for better quality/speed balance"""
    lora_scales = {
        "AntiBlur": 0.8,  # Slightly lower for better balance
        "Add Details": 1.2,  # Higher for more detail enhancement
        "Ultra Realism": 0.9,  # Balanced for realism
        "Face Realism": 1.1,  # Optimized for facial features
    }
    return lora_scales.get(lora_name, 1.0)

# Download and apply all LoRAs at startup
preload_and_apply_all_loras()

torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

@spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, enable_upscale=False, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    # All LoRAs are already loaded and active
    
    try:
        final_img = None
        for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
                prompt=prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                generator=generator,
                output_type="pil",
                good_vae=good_vae,
            ):
                final_img = img
                yield img, seed
        
        # Apply upscaling if enabled with optimized settings
        if enable_upscale and final_img is not None:
            try:
                # Use fewer steps for faster upscaling with minimal quality loss
                upscaled_img = upscaler(
                    prompt=prompt,
                    image=final_img,
                    num_inference_steps=15,  # Reduced from 20 for speed
                    guidance_scale=6.0,  # Slightly lower for faster convergence
                    generator=generator,
                ).images[0]
                yield upscaled_img, seed
            except Exception as e:
                print(f"Error during upscaling: {e}")
                yield final_img, seed
                
    except Exception as e:
        print(f"Error during generation: {e}")
        # Fallback to basic generation
        img = pipe(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]
        
        # Apply upscaling if enabled
        if enable_upscale:
            try:
                img = upscaler(
                    prompt=prompt,
                    image=img,
                    num_inference_steps=20,
                    guidance_scale=7.5,
                    generator=generator,
                ).images[0]
            except Exception as e:
                print(f"Error during upscaling: {e}")
                
        yield img, seed
    
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            gr.Markdown("**LoRAs Active:** All LoRAs are loaded and active simultaneously")
            
            enable_upscale = gr.Checkbox(
                label="Enable 4x Upscaling",
                value=False,
                info="Upscale final image using Stable Diffusion 4x upscaler"
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                    info="Lower values = faster generation, higher values = more prompt adherence"
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=4,
                    maximum=50,
                    step=1,
                    value=20,
                    info="Lower values = faster generation, higher values = better quality"
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, enable_upscale],
        outputs = [result, seed]
    )

demo.launch(share=True)