File size: 7,010 Bytes
ad723b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54de03
 
 
ad723b4
 
 
 
 
 
c54de03
 
 
 
 
 
 
 
 
 
 
 
 
ad723b4
c54de03
 
 
 
 
 
 
 
 
 
 
ad723b4
c54de03
 
 
 
ad723b4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
import numpy as np
from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
from typing import Any, Dict, List, Optional, Union

# Helper functions
def calculate_shift(

    image_seq_len,

    base_seq_len: int = 256,

    max_seq_len: int = 4096,

    base_shift: float = 0.5,

    max_shift: float = 1.16,

):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu

def retrieve_timesteps(

    scheduler,

    num_inference_steps: Optional[int] = None,

    device: Optional[Union[str, torch.device]] = None,

    timesteps: Optional[List[int]] = None,

    sigmas: Optional[List[float]] = None,

    **kwargs,

):
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

# FLUX pipeline function
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(

    self,

    prompt: Union[str, List[str]] = None,

    prompt_2: Optional[Union[str, List[str]]] = None,

    height: Optional[int] = None,

    width: Optional[int] = None,

    num_inference_steps: int = 28,

    timesteps: List[int] = None,

    guidance_scale: float = 3.5,

    num_images_per_prompt: Optional[int] = 1,

    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

    latents: Optional[torch.FloatTensor] = None,

    prompt_embeds: Optional[torch.FloatTensor] = None,

    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

    output_type: Optional[str] = "pil",

    return_dict: bool = True,

    joint_attention_kwargs: Optional[Dict[str, Any]] = None,

    max_sequence_length: int = 512,

    good_vae: Optional[Any] = None,

):
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    # 1. Check inputs
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    # 2. Define call parameters
    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    device = self._execution_device

    # 3. Encode prompt
    lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
    prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )
    # 4. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )
    # 5. Prepare timesteps
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    self._num_timesteps = len(timesteps)

    # Handle guidance
    guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

    # 6. Denoising loop with optimizations
    skip_preview_steps = max(1, num_inference_steps // 8)  # Only preview every 8th step for speed
    
    for i, t in enumerate(timesteps):
        if self.interrupt:
            continue

        timestep = t.expand(latents.shape[0]).to(latents.dtype)

        # Use mixed precision for transformer call
        with torch.autocast(device_type=device.type, dtype=torch.bfloat16):
            noise_pred = self.transformer(
                hidden_states=latents,
                timestep=timestep / 1000,
                guidance=guidance,
                pooled_projections=pooled_prompt_embeds,
                encoder_hidden_states=prompt_embeds,
                txt_ids=text_ids,
                img_ids=latent_image_ids,
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )[0]
        
        # Only yield preview for certain steps to reduce overhead
        if i % skip_preview_steps == 0 or i == len(timesteps) - 1:
            latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
            latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
            
            # Use fast VAE decode with minimal memory allocation
            with torch.no_grad():
                image = self.vae.decode(latents_for_image, return_dict=False)[0]
            yield self.image_processor.postprocess(image, output_type=output_type)[0]
        
        # Scheduler step with memory optimization
        latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        
        # Only clear cache every few steps, not every step
        if i % 4 == 0:
            torch.cuda.empty_cache()

    # Final image using good_vae
    latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
    latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
    image = good_vae.decode(latents, return_dict=False)[0]
    self.maybe_free_model_hooks()
    torch.cuda.empty_cache()
    yield self.image_processor.postprocess(image, output_type=output_type)[0]