File size: 9,648 Bytes
1778e91
 
 
 
c405952
1778e91
 
 
 
 
 
 
c405952
 
 
1778e91
 
 
 
 
 
 
c405952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778e91
 
 
 
 
 
 
 
c405952
1778e91
 
 
 
 
c405952
 
1778e91
 
 
 
 
 
 
 
 
 
 
 
 
c405952
 
1778e91
 
 
 
c405952
1778e91
 
 
 
 
c405952
 
 
1778e91
 
 
 
 
 
 
 
c405952
1778e91
 
 
c405952
1778e91
 
 
67d3ff8
 
 
 
 
1778e91
 
 
 
 
 
 
 
 
 
 
 
 
67d3ff8
 
 
340bc5b
 
67d3ff8
1778e91
 
 
 
 
 
 
67d3ff8
 
 
340bc5b
 
67d3ff8
1778e91
 
 
 
c405952
1778e91
 
 
 
 
67d3ff8
1778e91
 
 
67d3ff8
1778e91
67d3ff8
 
1778e91
 
 
67d3ff8
1778e91
 
 
67d3ff8
1778e91
67d3ff8
 
1778e91
67d3ff8
 
 
 
 
 
 
 
 
 
 
 
 
1778e91
67d3ff8
1778e91
 
 
 
c405952
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import asyncio
import os
import time
from dataclasses import dataclass
from typing import List, Optional, AsyncGenerator
import gradio as gr
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from rich.console import Console
from rich.panel import Panel
from rich.text import Text
from logger import setup_logger, log_execution_time, log_async_execution_time

from browser_use import Agent, Browser
from browser_use.browser.browser import BrowserContext
from api_clients import OpenRouterClient, ElevenLabsClient

load_dotenv()

console = Console()
logger = setup_logger("interface")

@dataclass
class ActionResult:
	is_done: bool
	extracted_content: Optional[str]
	error: Optional[str]
	include_in_memory: bool


@dataclass
class AgentHistoryList:
	all_results: List[ActionResult]
	all_model_outputs: List[dict]


def parse_agent_history(history_str: str) -> None:
	# Split the content into sections based on ActionResult entries
	sections = history_str.split('ActionResult(')

	for i, section in enumerate(sections[1:], 1):  # Skip first empty section
		# Extract relevant information
		content = ''
		if 'extracted_content=' in section:
			content = section.split('extracted_content=')[1].split(',')[0].strip("'")

		if content:
			header = Text(f'Step {i}', style='bold blue')
			panel = Panel(content, title=header, border_style='blue')
			console.print(panel)
			console.print()


async def run_browser_task(
	task: str,
	api_key: str,
	provider: str = 'openai',
	model: str = 'gpt-4-vision',
	headless: bool = True,
) -> str:
	if not api_key.strip():
		return 'Please provide an API key'

	if provider == 'openai':
		os.environ['OPENAI_API_KEY'] = api_key
		llm = ChatOpenAI(model=model)
	elif provider == 'anthropic':
		os.environ['ANTHROPIC_API_KEY'] = api_key
		llm = ChatAnthropic(model=model)
	else:  # google
		os.environ['GOOGLE_API_KEY'] = api_key
		llm = ChatGoogleGenerativeAI(model=model)

	try:
		agent = Agent(
			task=task,
			llm=llm,
			browser=Browser(BrowserContext(headless=True))
		)
		result = await agent.run()
		#  TODO: The result cloud be parsed better
		return result
	except Exception as e:
		return f'Error: {str(e)}'


@log_async_execution_time(logger)
async def scrape_content(url: str) -> str:
    """
    Scrape and summarize content from the given URL using browser automation
    
    This function performs the following steps:
    1. Validates the input URL
    2. Initializes the browser agent
    3. Extracts and summarizes the content
    
    Args:
        url: Target URL to scrape
        
    Returns:
        Summarized content suitable for podcast generation
        
    Raises:
        ValueError: If URL is invalid or content extraction fails
    """
    logger.info(f"Starting content scrape for URL: {url}")
    
    # Input validation
    if not url.startswith(('http://', 'https://')):
        logger.error(f"Invalid URL format: {url}")
        raise ValueError("URL must start with http:// or https://")
    
    try:
        logger.debug("Initializing LLM and browser agent")
        llm = ChatOpenAI(model="gpt-4")
        agent = Agent(
            task=f"Visit this URL: {url} and extract the main content. Summarize it in a clear and concise way.",
            llm=llm,
            browser=Browser(BrowserContext(headless=True))
        )
        
        logger.info("Executing content extraction")
        result = await agent.run()
        
        logger.debug(f"Content extraction successful. Length: {len(result)} chars")
        logger.debug(f"Content preview: {result[:200]}...")
        
        return result
    except Exception as e:
        logger.error(f"Content extraction failed for {url}", exc_info=True)
        raise

@log_async_execution_time(logger)
async def create_podcast(
    url: str,
    prompt: str,
    elevenlabs_key: str,
    voice_id: str,
    openrouter_key: str,
    model_id: str,
) -> AsyncGenerator[tuple[Optional[str], str], None]:
    """
    Create a podcast through a multi-step process:
    1. Content extraction from URL
    2. Script generation using AI
    3. Voice synthesis
    
    Progress updates are yielded at each step for UI feedback.
    """
    logger.info(f"Starting podcast creation for URL: {url}")
    logger.debug(f"Parameters - Voice: {voice_id}, Model: {model_id}")
    logger.debug(f"Prompt length: {len(prompt)} chars")
    
    try:
        # Initialize clients with validation
        logger.debug("Initializing API clients")
        openrouter = OpenRouterClient(openrouter_key)
        elevenlabs = ElevenLabsClient(elevenlabs_key)
        
        # Phase 1: Content scraping
        logger.info("Phase 1/3: Content scraping")
        yield None, "Scraping website content..."
        content = await scrape_content(url)
        logger.debug(f"Scraped content length: {len(content)} chars")
        
        # Phase 2: Script generation
        logger.info("Phase 2/3: Script generation")
        yield None, "Generating podcast script..."
        script = await openrouter.generate_script(content, prompt, model_id)
        logger.debug(f"Generated script length: {len(script)} chars")
        
        # Phase 3: Audio synthesis
        logger.info("Phase 3/3: Audio generation")
        yield None, "Converting to audio..."
        audio = elevenlabs.generate_audio(script, voice_id)
        logger.debug(f"Generated audio size: {len(audio)} bytes")
        
        # Save output
        audio_path = f"podcast_{int(time.time())}.mp3"
        logger.debug(f"Saving audio to: {audio_path}")
        with open(audio_path, "wb") as f:
            f.write(audio)
        
        logger.info("Podcast creation completed successfully")
        yield audio_path, "Podcast created successfully!"
        
    except Exception as e:
        logger.error("Podcast creation failed", exc_info=True)
        yield None, f"Error: {str(e)}"

def create_ui():
    logger.info("Initializing Gradio interface")
    
    # Default choices for dropdowns
    default_voices = [("", "Enter API key to load voices")]
    default_models = [("", "Enter API key to load models")]
    
    with gr.Blocks(title='PodcastCreator', theme=gr.themes.Soft()) as interface:
        with gr.Row():
            with gr.Column(scale=2):
                url_input = gr.Textbox(label='Source URL', placeholder='Enter the URL...')
                prompt = gr.Textbox(label='Podcast Topic', lines=3)
                
                with gr.Row():
                    with gr.Column():
                        elevenlabs_key = gr.Textbox(
                            label='ElevenLabs API Key',
                            type='password',
                            placeholder='Enter key...'
                        )
                        voice = gr.Dropdown(
                            label='Voice',
                            choices=default_voices,
                            value=None,
                            allow_custom_value=True
                        )
                    
                    with gr.Column():
                        openrouter_key = gr.Textbox(
                            label='OpenRouter API Key',
                            type='password',
                            placeholder='Enter key...'
                        )
                        model = gr.Dropdown(
                            label='AI Model',
                            choices=default_models,
                            value=None,
                            allow_custom_value=True
                        )
                
                submit_btn = gr.Button('Create Podcast', variant='primary')

            with gr.Column(scale=1):
                audio_output = gr.Audio(label="Generated Podcast")
                status = gr.Textbox(label='Status', interactive=False)

        # Event handlers
        def update_voices(key):
            if not key:
                return gr.Dropdown(choices=default_voices, value=default_voices[0][0])
            try:
                client = ElevenLabsClient(key)
                voices = client.get_voices()
                return gr.Dropdown(choices=voices, value=voices[0][0] if voices else None)
            except Exception as e:
                logger.error(f"Failed to load voices: {e}")
                return gr.Dropdown(choices=[(None, f"Error: {str(e)}")], value=None)

        async def update_models(key):
            if not key:
                return gr.Dropdown(choices=default_models, value=default_models[0][0])
            try:
                client = OpenRouterClient(key)
                models = await client.get_models()
                return gr.Dropdown(choices=models, value=models[0][0] if models else None)
            except Exception as e:
                logger.error(f"Failed to load models: {e}")
                return gr.Dropdown(choices=[(None, f"Error: {str(e)}")], value=None)

        # Add error handling for the event handlers
        try:
            elevenlabs_key.change(fn=update_voices, inputs=elevenlabs_key, outputs=voice)
            openrouter_key.change(fn=update_models, inputs=openrouter_key, outputs=model)
            
            submit_btn.click(
                fn=create_podcast,
                inputs=[url_input, prompt, elevenlabs_key, voice, openrouter_key, model],
                outputs=[audio_output, status]
            )
        except Exception as e:
            logger.error(f"Failed to set up event handlers: {e}")
            raise

    logger.info("Gradio interface initialized successfully")
    return interface

if __name__ == '__main__':
    demo = create_ui()
    demo.launch()