Spaces:
Running
Running
File size: 10,763 Bytes
1412dfd 618b677 1412dfd 618b677 1412dfd 20d8f48 1412dfd 618b677 1412dfd 20d8f48 1412dfd 20d8f48 1412dfd 20d8f48 1412dfd 20d8f48 1412dfd 20d8f48 1412dfd 20d8f48 1412dfd 20d8f48 1412dfd 20d8f48 1412dfd 20d8f48 1412dfd 20d8f48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import base64
import io
import json
import logging
import os
import time
from pathlib import Path
from typing import Any
import requests
import timm
import torch
import torchvision.transforms as transforms
from PIL import Image
class TaggingHead(torch.nn.Module):
def __init__(self, input_dim, num_classes):
super().__init__()
self.input_dim = input_dim
self.num_classes = num_classes
self.head = torch.nn.Sequential(torch.nn.Linear(input_dim, num_classes))
def forward(self, x):
logits = self.head(x)
probs = torch.nn.functional.sigmoid(logits)
return probs
def get_tags(tags_file: Path) -> tuple[dict[str, int], int, int]:
with tags_file.open("r", encoding="utf-8") as f:
tag_info = json.load(f)
tag_map = tag_info["tag_map"]
tag_split = tag_info["tag_split"]
gen_tag_count = tag_split["gen_tag_count"]
character_tag_count = tag_split["character_tag_count"]
return tag_map, gen_tag_count, character_tag_count
def get_character_ip_mapping(mapping_file: Path):
with mapping_file.open("r", encoding="utf-8") as f:
mapping = json.load(f)
return mapping
def get_encoder():
base_model_repo = "hf_hub:SmilingWolf/wd-eva02-large-tagger-v3"
encoder = timm.create_model(base_model_repo, pretrained=False)
encoder.reset_classifier(0)
return encoder
def get_decoder():
decoder = TaggingHead(1024, 13461)
return decoder
def get_model():
encoder = get_encoder()
decoder = get_decoder()
model = torch.nn.Sequential(encoder, decoder)
return model
def load_model(weights_file, device):
model = get_model()
states_dict = torch.load(weights_file, map_location=device, weights_only=True)
model.load_state_dict(states_dict)
model.to(device)
model.eval()
return model
def pure_pil_alpha_to_color_v2(
image: Image.Image, color: tuple[int, int, int] = (255, 255, 255)
) -> Image.Image:
"""
Convert a PIL image with an alpha channel to a RGB image.
This is a workaround for the fact that the model expects a RGB image, but the image may have an alpha channel.
This function will convert the image to a RGB image, and fill the alpha channel with the given color.
The alpha channel is the 4th channel of the image.
"""
image.load() # needed for split()
background = Image.new("RGB", image.size, color)
background.paste(image, mask=image.split()[3]) # 3 is the alpha channel
return background
def pil_to_rgb(image: Image.Image) -> Image.Image:
if image.mode == "RGBA":
image = pure_pil_alpha_to_color_v2(image)
elif image.mode == "P":
image = pure_pil_alpha_to_color_v2(image.convert("RGBA"))
else:
image = image.convert("RGB")
return image
class EndpointHandler:
def __init__(self, path: str):
repo_path = Path(path)
assert repo_path.is_dir(), f"Model directory not found: {repo_path}"
weights_file = repo_path / "model_v0.9.pth"
tags_file = repo_path / "tags_v0.9_13k.json"
mapping_file = repo_path / "char_ip_map.json"
if not weights_file.exists():
raise FileNotFoundError(f"Model file not found: {weights_file}")
if not tags_file.exists():
raise FileNotFoundError(f"Tags file not found: {tags_file}")
if not mapping_file.exists():
raise FileNotFoundError(f"Mapping file not found: {mapping_file}")
# Robust device selection: prefer CPU unless CUDA is truly usable
force_cpu = os.environ.get("FORCE_CPU", "0") in {"1", "true", "TRUE", "yes", "on"}
if not force_cpu and torch.cuda.is_available():
try:
# Probe that CUDA can actually be used (driver present)
torch.zeros(1).to("cuda")
self.device = "cuda"
except Exception:
self.device = "cpu"
else:
self.device = "cpu"
self.model = load_model(str(weights_file), self.device)
self.transform = transforms.Compose(
[
transforms.Resize((448, 448)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
self.fetch_image_timeout = 5.0
self.default_general_threshold = 0.3
self.default_character_threshold = 0.85
tag_map, self.gen_tag_count, self.character_tag_count = get_tags(tags_file)
# Invert the tag_map for efficient index-to-tag lookups
self.index_to_tag_map = {v: k for k, v in tag_map.items()}
self.character_ip_mapping = get_character_ip_mapping(mapping_file)
def __call__(self, data: dict[str, Any]) -> dict[str, Any]:
inputs = data.pop("inputs", data)
fetch_start_time = time.time()
if isinstance(inputs, Image.Image):
image = inputs
elif image_url := inputs.pop("url", None):
with requests.get(
image_url, stream=True, timeout=self.fetch_image_timeout
) as res:
res.raise_for_status()
image = Image.open(res.raw)
elif image_base64_encoded := inputs.pop("image", None):
image = Image.open(io.BytesIO(base64.b64decode(image_base64_encoded)))
else:
raise ValueError(f"No image or url provided: {data}")
# remove alpha channel if it exists
image = pil_to_rgb(image)
fetch_time = time.time() - fetch_start_time
parameters = data.pop("parameters", {})
general_threshold = parameters.pop(
"general_threshold", self.default_general_threshold
)
character_threshold = parameters.pop(
"character_threshold", self.default_character_threshold
)
# Optional behavior controls
mode = parameters.pop("mode", "threshold") # "threshold" | "topk"
include_scores = bool(parameters.pop("include_scores", False))
topk_general = int(parameters.pop("topk_general", 25))
topk_character = int(parameters.pop("topk_character", 10))
inference_start_time = time.time()
with torch.inference_mode():
# Preprocess image on CPU
image_tensor = self.transform(image).unsqueeze(0)
# Pin memory and use non_blocking transfer only when using CUDA
if self.device == "cuda":
image_tensor = image_tensor.pin_memory().to(self.device, non_blocking=True)
else:
image_tensor = image_tensor.to(self.device)
# Run model on GPU
probs = self.model(image_tensor)[0] # Get probs for the single image
if mode == "topk":
# Select top-k by category, independent of thresholds
gen_slice = probs[: self.gen_tag_count]
char_slice = probs[self.gen_tag_count :]
k_gen = max(0, min(int(topk_general), self.gen_tag_count))
k_char = max(0, min(int(topk_character), self.character_tag_count))
gen_scores, gen_idx = (torch.tensor([]), torch.tensor([], dtype=torch.long))
char_scores, char_idx = (torch.tensor([]), torch.tensor([], dtype=torch.long))
if k_gen > 0:
gen_scores, gen_idx = torch.topk(gen_slice, k_gen)
if k_char > 0:
char_scores, char_idx = torch.topk(char_slice, k_char)
char_idx = char_idx + self.gen_tag_count
# Merge for unified post-processing
combined_indices = torch.cat((gen_idx, char_idx)).cpu()
combined_scores = torch.cat((gen_scores, char_scores)).cpu()
else:
# Perform thresholding directly on the GPU
general_mask = probs[: self.gen_tag_count] > general_threshold
character_mask = probs[self.gen_tag_count :] > character_threshold
# Get the indices of positive tags on the GPU
general_indices = general_mask.nonzero(as_tuple=True)[0]
character_indices = (
character_mask.nonzero(as_tuple=True)[0] + self.gen_tag_count
)
# Combine indices and move the small result tensor to the CPU
combined_indices = torch.cat((general_indices, character_indices)).cpu()
combined_scores = probs[combined_indices].detach().float().cpu()
inference_time = time.time() - inference_start_time
post_process_start_time = time.time()
cur_gen_tags = []
cur_char_tags = []
gen_scores_out: dict[str, float] = {}
char_scores_out: dict[str, float] = {}
# Use the efficient pre-computed map for lookups
for pos, i in enumerate(combined_indices):
idx = int(i.item())
tag = self.index_to_tag_map[idx]
if idx < self.gen_tag_count:
cur_gen_tags.append(tag)
if include_scores:
score = float(combined_scores[pos].item())
gen_scores_out[tag] = score
else:
cur_char_tags.append(tag)
if include_scores:
score = float(combined_scores[pos].item())
char_scores_out[tag] = score
ip_tags = []
for tag in cur_char_tags:
if tag in self.character_ip_mapping:
ip_tags.extend(self.character_ip_mapping[tag])
ip_tags = sorted(set(ip_tags))
post_process_time = time.time() - post_process_start_time
logging.info(
f"Timing - Fetch: {fetch_time:.3f}s, Inference: {inference_time:.3f}s, Post-process: {post_process_time:.3f}s, Total: {fetch_time + inference_time + post_process_time:.3f}s"
)
out: dict[str, Any] = {
"feature": cur_gen_tags,
"character": cur_char_tags,
"ip": ip_tags,
"_timings": {
"fetch_s": round(fetch_time, 4),
"inference_s": round(inference_time, 4),
"post_process_s": round(post_process_time, 4),
"total_s": round(fetch_time + inference_time + post_process_time, 4),
},
"_params": {
"mode": mode,
"general_threshold": general_threshold,
"character_threshold": character_threshold,
"topk_general": topk_general,
"topk_character": topk_character,
},
}
if include_scores:
out["feature_scores"] = gen_scores_out
out["character_scores"] = char_scores_out
return out
|