from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse, HTMLResponse from transformers import VitsModel, AutoTokenizer import torch import numpy as np from fastapi.middleware.cors import CORSMiddleware import io import soundfile as sf from pydantic import BaseModel import string import unicodedata from pypinyin import pinyin, Style import re from umsc import UgMultiScriptConverter # Initialize uyghur script converter ug_arab_to_latn = UgMultiScriptConverter('UAS', 'ULS') ug_latn_to_arab = UgMultiScriptConverter('ULS', 'UAS') import os # Access the secret named "MY_API_KEY" hf_token = os.environ.get("HF_TOKEN") app = FastAPI() # Allow specific domains or all (*) for testing app.add_middleware( CORSMiddleware, # allow_origins=["*"], # Replace with your domain allow_origins=["https://piyazon.top", "https://*.piyazon.top"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) def fix_string(batch): batch = batch.lower() batch = unicodedata.normalize('NFKC', batch) extra_punctuation = "–؛;،؟?«»‹›−—¬”“•…" # Add your additional custom punctuation from the training set here all_punctuation = string.punctuation + extra_punctuation for char in all_punctuation: batch = batch.replace(char, ' ') ## replace ug chars # Replace 'ژ' with 'ج' batch = batch.replace('ژ', 'ج') batch = batch.replace('ک', 'ك') batch = batch.replace('ی', 'ى') # batch = batch.replace('ه', 'ە') batch = batch.replace('ه', 'ە') ## replace nums numbers_to_uyghur_map = { '0': ' نۆل ', '1': ' بىر ', '2': ' ئىككى ', '3': ' ئۈچ ', '4': ' تۆت ', '5': ' بەش ', '6': ' ئالتە ', '7': ' يەتتە ', '8': ' سەككىز ', '9': ' توققۇز ' } for num_char, uyghur_char in numbers_to_uyghur_map.items(): batch = batch.replace(num_char, uyghur_char) ## replace en chars english_to_uyghur_map = { 'a': ' ئېي ', 'b': ' بى ', 'c': ' سى ', 'd': ' دى ', 'e': ' ئى ', 'f': ' ئەف ', 'g': ' جى ', 'h': ' ئېچ ', 'i': ' ئاي ', 'j': ' جېي ', 'k': ' کېي ', 'l': ' ئەل ', 'm': ' ئەم ', 'n': ' ئېن ', 'o': ' ئو ', 'p': ' پى ', 'q': ' كىيۇ ', 'r': ' ئار ', 's': ' ئەس ', 't': ' تى ', 'u': ' يۇ ', 'v': ' ۋى ', 'w': ' دابىلىيۇ ', 'x': ' ئېكىس ', 'y': ' ۋاي ', 'z': ' زى ', } for eng_char, uyghur_char in english_to_uyghur_map.items(): batch = batch.replace(eng_char, uyghur_char) # batch = batch.replace('e', ' ئې ') # Optional: Collapse multiple spaces into one # batch = ' '.join(batch.split()) return batch def number_to_uyghur_arabic_script(number_str): """ Converts a number (integer, decimal, fraction, percentage, or ordinal) up to 9 digits (integer and decimal) to its Uyghur pronunciation in Arabic script. Decimal part is pronounced as a whole number with a fractional term. Ordinals use the -ىنجى suffix for all numbers up to 9 digits, with special forms for single digits. Args: number_str (str): Number as a string (e.g., '123', '0.001', '1/4', '25%', '1968_', '123456789'). Returns: str: Uyghur pronunciation in Arabic script. """ # Uyghur number words in Arabic script digits = { 0: 'نۆل', 1: 'بىر', 2: 'ئىككى', 3: 'ئۈچ', 4: 'تۆت', 5: 'بەش', 6: 'ئالتە', 7: 'يەتتە', 8: 'سەككىز', 9: 'توققۇز' } ordinals = { 1: 'بىرىنجى', 2: 'ئىككىنجى', 3: 'ئۈچىنجى', 4: 'تۆتىنجى', 5: 'بەشىنجى', 6: 'ئالتىنجى', 7: 'يەتتىنجى', 8: 'سەككىزىنجى', 9: 'توققۇزىنجى' } tens = { 10: 'ئون', 20: 'يىگىرمە', 30: 'ئوتتۇز', 40: 'قىرىق', 50: 'ئەللىك', 60: 'ئاتمىش', 70: 'يەتمىش', 80: 'سەكسەن', 90: 'توقسان' } units = [ (1000000000, 'مىليارد'), # billion (1000000, 'مىليون'), # million (1000, 'مىڭ'), # thousand (100, 'يۈز') # hundred ] fractions = { 1: 'ئوندا', # tenths 2: 'يۈزدە', # hundredths 3: 'مىڭدە', # thousandths 4: 'ئون مىڭدە', # ten-thousandths 5: 'يۈز مىڭدە', # hundred-thousandths 6: 'مىليوندا', # millionths 7: 'ئون مىليوندا', # ten-millionths 8: 'يۈز مىليوندا', # hundred-millionths 9: 'مىليارددا' # billionths } # Convert integer part to words def integer_to_words(num): if num == 0: return digits[0] result = [] num = int(num) # Handle large units (billion, million, thousand, hundred) for value, unit_name in units: if num >= value: count = num // value if count == 1 and value >= 100: # e.g., 100 → "يۈز", not "بىر يۈز" result.append(unit_name) else: result.append(integer_to_words(count) + ' ' + unit_name) num %= value # Handle tens and ones if num >= 10 and num in tens: result.append(tens[num]) elif num > 10: ten = (num // 10) * 10 one = num % 10 if one == 0: result.append(tens[ten]) else: result.append(tens[ten] + ' ' + digits[one]) elif num > 0: result.append(digits[num]) return ' '.join(result) # Clean the input (remove commas or spaces) number_str = number_str.replace(',', '').replace(' ', '') # Check for ordinal (ends with '_') is_ordinal = number_str.endswith('_') or number_str.endswith('-') if is_ordinal: number_str = number_str[:-1] # Remove the _ sign num = int(number_str) if num > 999999999: # raise ValueError("Ordinal number exceeds 9 digits") return number_str if num in ordinals: # Use special forms for single-digit ordinals return ordinals[num] # Convert to words and modify the last word for ordinal words = integer_to_words(num).split() last_num = num % 100 # Get the last two digits to handle tens and ones if last_num in tens: words[-1] = tens[last_num] + 'ىنجى ' # e.g., 60_ → ئاتمىشىنجى elif last_num % 10 == 0 and last_num > 0: words[-1] = tens[last_num] + 'ىنجى ' # e.g., 60_ → ئاتمىشىنجى else: last_digit = num % 10 if last_digit in ordinals: words[-1] = ordinals[last_digit] + ' ' # Replace last digit with ordinal form elif last_digit == 0: words[-1] += 'ىنجى' return ' '.join(words) # Check for percentage is_percentage = number_str.endswith('%') if is_percentage: number_str = number_str[:-1] # Remove the % sign # Check for fraction if '/' in number_str: numerator, denominator = map(int, number_str.split('/')) if numerator in digits and denominator in digits: return f"{digits[denominator]}دە {digits[numerator]}" else: # raise ValueError("Fractions are only supported for single-digit numerators and denominators") return number_str # Split into integer and decimal parts parts = number_str.split('.') integer_part = parts[0] decimal_part = parts[1] if len(parts) > 1 else None # Validate integer part (up to 9 digits) if len(integer_part) > 9: # raise ValueError("Integer part exceeds 9 digits") return number_str # Validate decimal part (up to 9 digits) if decimal_part and len(decimal_part) > 9: # raise ValueError("Decimal part exceeds 9 digits") return number_str # Convert the integer part pronunciation = integer_to_words(int(integer_part)) # Handle decimal part as a whole number with fractional term if decimal_part: pronunciation += ' پۈتۈن' if decimal_part != '0': # Only pronounce non-zero decimal parts decimal_value = int(decimal_part.rstrip('0')) # Remove trailing zeros decimal_places = len(decimal_part.rstrip('0')) # Count significant decimal places fraction_term = fractions.get(decimal_places, 'مىليارددا') # Fallback for beyond 9 digits pronunciation += ' ' + fraction_term + ' ' + integer_to_words(decimal_value) # Append percentage term if applicable if is_percentage: pronunciation += ' پىرسەنت' return pronunciation.strip() # return pronunciation def process_uyghur_text_with_numbers(text): """ Processes a string containing Uyghur text and numbers, converting valid numbers to their Uyghur pronunciation in Arabic script while preserving non-numeric text. Args: text (str): Input string with Uyghur text and numbers (e.g., '1/4 كىلو 25% تەملىك'). Returns: str: String with numbers converted to Uyghur pronunciation, non-numeric text preserved. """ text = text.replace('%', ' پىرسەنت ') # Valid number characters and symbols digits = '0123456789' number_symbols = '/.%_-' result = [] i = 0 while i < len(text): # Check for spaces and preserve them if text[i].isspace(): result.append(text[i]) i += 1 continue # Try to identify a number (fraction, percentage, ordinal, decimal, or integer) number_start = i number_str = '' is_number = False # Collect potential number characters while i < len(text) and (text[i] in digits or text[i] in number_symbols): number_str += text[i] i += 1 is_number = True # If we found a potential number, validate and convert it if is_number: # Check if the string is a valid number format valid = False if '/' in number_str and number_str.count('/') == 1: # Fraction: e.g., "1/4" num, denom = number_str.split('/') if num.isdigit() and denom.isdigit(): valid = True elif number_str.endswith('%'): # Percentage: e.g., "25%" if number_str[:-1].isdigit(): valid = True elif number_str.endswith('_') or number_str.endswith('-'): # Ordinal: e.g., "1_" if number_str[:-1].isdigit(): valid = True elif '.' in number_str and number_str.count('.') == 1: # Decimal: e.g., "3.14" whole, frac = number_str.split('.') if whole.isdigit() and frac.isdigit(): valid = True elif number_str.isdigit(): # Integer: e.g., "123" valid = True if valid: try: # Convert the number to Uyghur pronunciation converted = number_to_uyghur_arabic_script(number_str) result.append(converted) except ValueError: # If conversion fails, append the original number string result.append(number_str) else: # If not a valid number format, treat as regular text result.append(number_str) else: # Non-number character, append as is result.append(text[i]) i += 1 # Join the result list into a string return ''.join(result) def fix_pauctuations(batch): batch = batch.lower() batch = unicodedata.normalize('NFKC', batch) # extra_punctuation = "–؛;،؟?«»‹›−—¬”“•…" # Add your additional custom punctuation from the training set here # all_punctuation = string.punctuation + extra_punctuation # for char in all_punctuation: # batch = batch.replace(char, ' ') ## replace ug chars # Replace 'ژ' with 'ج' batch = batch.replace('ژ', 'ج') batch = batch.replace('ک', 'ك') batch = batch.replace('ی', 'ى') batch = batch.replace('ه', 'ە') vocab = [" ", "ئ", "ا", "ب", "ت", "ج", "خ", "د", "ر", "ز", "س", "ش", "غ", "ف", "ق", "ك", "ل", "م", "ن", "و", "ى", "ي", "پ", "چ", "ڭ", "گ", "ھ", "ۆ", "ۇ", "ۈ", "ۋ", "ې", "ە"] # Process each character in the batch result = [] for char in batch: if char in vocab: result.append(char) elif char in {'.', '?', '؟'}: result.append(' ') # Replace dot with two spaces else: result.append(' ') # Replace other non-vocab characters with one space # Join the result into a string return ''.join(result) def chinese_to_pinyin(mixed_text): """ Convert Chinese characters in a mixed-language string to Pinyin without tone marks, preserving non-Chinese text, using only English letters. Args: mixed_text (str): Input string containing Chinese characters and other languages (e.g., English, Uyghur) Returns: str: String with Chinese characters converted to Pinyin (no tone marks), non-Chinese text unchanged """ # Regular expression to match Chinese characters (Unicode range for CJK Unified Ideographs) chinese_pattern = re.compile(r'[\u4e00-\u9fff]+') def replace_chinese(match): chinese_text = match.group(0) # Convert Chinese to Pinyin without tone marks, join syllables with spaces pinyin_list = pinyin(chinese_text, style=Style.NORMAL) return ' '.join([item[0] for item in pinyin_list]) # Replace Chinese characters with their Pinyin, leave other text unchanged result = chinese_pattern.sub(replace_chinese, mixed_text) return result # model = VitsModel.from_pretrained("facebook/mms-tts-uig-script_arabic") # tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-uig-script_arabic") uy_model_name = "piyazon/TTS-CV-Radio-RVC-Alikurban-Ug" model_ug = VitsModel.from_pretrained(uy_model_name, token=hf_token) tokenizer_ug = AutoTokenizer.from_pretrained(uy_model_name, token=hf_token) # model_ug = VitsModel.from_pretrained("piyazon/qutadgu_bilik") # tokenizer_ug = AutoTokenizer.from_pretrained("piyazon/qutadgu_bilik") model_ru = VitsModel.from_pretrained("facebook/mms-tts-rus") tokenizer_ru = AutoTokenizer.from_pretrained("facebook/mms-tts-rus") # Pydantic model for request body class TextInput(BaseModel): text: str lang: str """ curl -X POST https://piyazon-tts-piyazon.hf.space/generate-tts \ -H "Content-Type: application/json" \ -d '{"text": "Hello, world!", "lang":"ug"}' \ --output output.wav """ @app.post("/generate-tts") async def generate_tts(input: TextInput): print(input.text) try: if input.lang=="ug": model = model_ug tokenizer = tokenizer_ug fixted_text = fix_pauctuations(process_uyghur_text_with_numbers(ug_latn_to_arab(chinese_to_pinyin(input.text)))) print(fixted_text) inputs = tokenizer(fixted_text, return_tensors="pt") else: model = model_ru tokenizer = tokenizer_ru inputs = tokenizer(input.text, return_tensors="pt") # Tokenize input text # Generate waveform with torch.no_grad(): waveform = model(**inputs).waveform # Convert waveform to audio file (WAV format) waveform = waveform.squeeze().numpy() # Convert tensor to numpy array buffer = io.BytesIO() sf.write(buffer, waveform, samplerate=model.config.sampling_rate, format="WAV") buffer.seek(0) # Return audio as streaming response return StreamingResponse( buffer, media_type="audio/wav", headers={"Content-Disposition": 'attachment; filename="output.wav"'} ) except Exception as e: raise HTTPException(status_code=500, detail=f"Error generating audio: {str(e)}") # @app.get("/") # def greet_json(): # return { # "Hello": "World!", # } @app.get("/", response_class=HTMLResponse) def greet_html(): return """