pmolchanov commited on
Commit
2d4f668
·
verified ·
1 Parent(s): 2258d16

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -58
app.py CHANGED
@@ -1,62 +1,64 @@
1
  import gradio as gr
2
-
3
- from transformers import AutoModelForCausalLM, AutoTokenizer, StopStringCriteria, StoppingCriteriaList
4
- import torch
5
-
6
- import torch._dynamo
7
- torch._dynamo.config.suppress_errors = True
8
-
9
- import os
10
- os.system("nvidia-smi")
11
- print("TORCH_CUDA", torch.cuda.is_available())
12
-
13
-
14
- print("loading model")
15
- # Load the tokenizer and model
16
- # repo_name = "nvidia/Hymba-1.5B-Instruct"
17
- repo_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
18
-
19
- tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
20
- model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
21
-
22
- model = model.cuda().to(torch.bfloat16)
23
-
24
- print("model is loaded")
25
-
26
-
27
- # Chat with Hymba
28
- # prompt = input()
29
- prompt = "Who are you?"
30
-
31
- messages = [
32
- {"role": "system", "content": "You are a helpful assistant."}
33
- ]
34
- messages.append({"role": "user", "content": prompt})
35
-
36
- # Apply chat template
37
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda')
38
- stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings="</s>")])
39
-
40
- print("generating prompt")
41
-
42
-
43
- outputs = model.generate(
44
- tokenized_chat,
45
- max_new_tokens=256,
46
- do_sample=False,
47
- temperature=0.7,
48
- use_cache=True,
49
- stopping_criteria=stopping_criteria
 
 
 
 
 
 
 
 
 
 
50
  )
51
- input_length = tokenized_chat.shape[1]
52
- response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
53
-
54
-
55
 
56
- def greet(name):
57
- print(f"User: prompt")
58
- print(f"Model response: {response}")
59
- # return "Hello " + name + "!!"
60
 
61
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
62
- demo.launch()
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceTB/SmolLM2-1.7B-Instruct")
8
+ # client = InferenceClient("nvidia/Hymba-1.5B-Instruct")
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "System", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "User", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "Assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "User", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
  )
 
 
 
 
61
 
 
 
 
 
62
 
63
+ if __name__ == "__main__":
64
+ demo.launch()