Spaces:
Paused
Paused
Update app_chat.py
Browse files- app_chat.py +19 -1
app_chat.py
CHANGED
@@ -6,6 +6,7 @@ import gradio as gr
|
|
6 |
import spaces
|
7 |
import torch
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
9 |
|
10 |
MAX_MAX_NEW_TOKENS = 1024
|
11 |
DEFAULT_MAX_NEW_TOKENS = 512
|
@@ -21,6 +22,19 @@ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat1
|
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
22 |
#tokenizer.use_default_system_prompt = False
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
@spaces.GPU
|
26 |
def generate(
|
@@ -39,7 +53,10 @@ def generate(
|
|
39 |
conversation += chat_history
|
40 |
conversation.append({"role": "User", "content": message})
|
41 |
|
42 |
-
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
|
|
|
|
|
|
43 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
44 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
45 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
@@ -56,6 +73,7 @@ def generate(
|
|
56 |
temperature=temperature,
|
57 |
num_beams=1,
|
58 |
repetition_penalty=repetition_penalty,
|
|
|
59 |
)
|
60 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
61 |
t.start()
|
|
|
6 |
import spaces
|
7 |
import torch
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
+
# from transformers import StoppingCriteria, StoppingCriteriaList, StopStringCriteria
|
10 |
|
11 |
MAX_MAX_NEW_TOKENS = 1024
|
12 |
DEFAULT_MAX_NEW_TOKENS = 512
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
23 |
#tokenizer.use_default_system_prompt = False
|
24 |
|
25 |
+
# class StoppingCriteriaSub(StoppingCriteria):
|
26 |
+
# def __init__(self, tokenizer, stops = [], encounters=1):
|
27 |
+
# super().__init__()
|
28 |
+
# self.stops = [stop.to("cuda") for stop in stops]
|
29 |
+
# self.tokenizer = tokenizer
|
30 |
+
# self.num_mamba_stop_ids = 8
|
31 |
+
|
32 |
+
# def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
|
33 |
+
# last_token = input_ids[0][-self.num_mamba_stop_ids:]
|
34 |
+
# for stop in self.stops:
|
35 |
+
# if self.tokenizer.decode(stop) in self.tokenizer.decode(last_token):
|
36 |
+
# return True
|
37 |
+
# return False
|
38 |
|
39 |
@spaces.GPU
|
40 |
def generate(
|
|
|
53 |
conversation += chat_history
|
54 |
conversation.append({"role": "User", "content": message})
|
55 |
|
56 |
+
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
57 |
+
|
58 |
+
# stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings="</s>")])
|
59 |
+
|
60 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
61 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
62 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
|
|
73 |
temperature=temperature,
|
74 |
num_beams=1,
|
75 |
repetition_penalty=repetition_penalty,
|
76 |
+
# "stopping_criteria": stopping_criteria,
|
77 |
)
|
78 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
79 |
t.start()
|