Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# Load the fine-tuned model using pipeline
|
| 7 |
+
model_path = "podcasts-org/detect-background-music"
|
| 8 |
+
classifier = pipeline("audio-classification", model=model_path, token=os.getenv("HF_TOKEN"))
|
| 9 |
+
|
| 10 |
+
def classify_audio(audio):
|
| 11 |
+
"""Classify whether audio has background music or not."""
|
| 12 |
+
if audio is None:
|
| 13 |
+
return "Please provide an audio file"
|
| 14 |
+
|
| 15 |
+
# audio is a tuple of (sample_rate, audio_array)
|
| 16 |
+
sample_rate, audio_array = audio
|
| 17 |
+
|
| 18 |
+
# Convert to float32 and normalize if needed
|
| 19 |
+
if audio_array.dtype == np.int16:
|
| 20 |
+
audio_array = audio_array.astype(np.float32) / 32768.0
|
| 21 |
+
elif audio_array.dtype == np.int32:
|
| 22 |
+
audio_array = audio_array.astype(np.float32) / 2147483648.0
|
| 23 |
+
|
| 24 |
+
# Convert stereo to mono if needed
|
| 25 |
+
if len(audio_array.shape) > 1:
|
| 26 |
+
audio_array = audio_array.mean(axis=1)
|
| 27 |
+
|
| 28 |
+
# Use the pipeline for inference
|
| 29 |
+
# Pipeline expects dict with "array" and "sampling_rate" keys
|
| 30 |
+
predictions = classifier({"array": audio_array, "sampling_rate": sample_rate})
|
| 31 |
+
|
| 32 |
+
# Convert list of dicts to single dict for Gradio Label component
|
| 33 |
+
results = {pred["label"]: pred["score"] for pred in predictions}
|
| 34 |
+
|
| 35 |
+
return results
|
| 36 |
+
|
| 37 |
+
# Create Gradio interface
|
| 38 |
+
demo = gr.Interface(
|
| 39 |
+
fn=classify_audio,
|
| 40 |
+
inputs=gr.Audio(type="numpy", label="Upload Audio"),
|
| 41 |
+
outputs=gr.Label(num_top_classes=2, label="Prediction"),
|
| 42 |
+
title="Background Music Detection",
|
| 43 |
+
description="Upload an audio file to detect whether it contains background music (BGM) or not. Model: Whisper-base fine-tuned on podcasts-org/bgm dataset.",
|
| 44 |
+
examples=None
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
if __name__ == "__main__":
|
| 48 |
+
demo.launch()
|