Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from transformers import DebertaModel | |
from config import DROPOUT_RATE, DEBERTA_MODEL_NAME | |
class DebertaMultiOutputModel(nn.Module): | |
tokenizer_name = DEBERTA_MODEL_NAME | |
def __init__(self, num_labels): | |
super(DebertaMultiOutputModel, self).__init__() | |
self.deberta = DebertaModel.from_pretrained(DEBERTA_MODEL_NAME) | |
self.dropout = nn.Dropout(DROPOUT_RATE) | |
self.classifiers = nn.ModuleList([ | |
nn.Linear(self.deberta.config.hidden_size, n_classes) for n_classes in num_labels | |
]) | |
def forward(self, input_ids, attention_mask): | |
last_hidden_state = self.deberta(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state | |
pooled_output = last_hidden_state[:, 0] # [CLS] token representation | |
pooled_output = self.dropout(pooled_output) | |
return [classifier(pooled_output) for classifier in self.classifiers] | |