Spaces:
Sleeping
Sleeping
File size: 6,032 Bytes
84af4eb a49b644 84af4eb 05e8dcd 84af4eb a49b644 84af4eb a49b644 84af4eb a49b644 84af4eb efb2161 84af4eb a49b644 84af4eb a49b644 84af4eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Optional
import pandas as pd
import joblib
import os
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.multioutput import MultiOutputClassifier
from sklearn.linear_model import LogisticRegression
# --- Configuration ---
LABEL_COLUMNS = [
"Red_Flag_Reason", "Maker_Action", "Escalation_Level",
"Risk_Category", "Risk_Drivers", "Investigation_Outcome"
]
TEXT_COLUMN = "Sanction_Context"
MODEL_DIR = "/tmp"
MODEL_PATH = os.path.join(MODEL_DIR, "logreg_model.pkl")
TFIDF_PATH = os.path.join(MODEL_DIR, "tfidf_vectorizer.pkl")
ENCODERS_PATH = os.path.join(MODEL_DIR, "label_encoders.pkl")
# --- FastAPI App ---
app = FastAPI()
# --- Input Schema ---
class TransactionData(BaseModel):
Transaction_Id: str
Hit_Seq: int
Hit_Id_List: str
Origin: str
Designation: str
Keywords: str
Name: str
SWIFT_Tag: str
Currency: str
Entity: str
Message: str
City: str
Country: str
State: str
Hit_Type: str
Record_Matching_String: str
WatchList_Match_String: str
Payment_Sender_Name: Optional[str] = ""
Payment_Reciever_Name: Optional[str] = ""
Swift_Message_Type: str
Text_Sanction_Data: str
Matched_Sanctioned_Entity: str
Is_Match: int
Red_Flag_Reason: str
Risk_Level: str
Risk_Score: float
Risk_Score_Description: str
CDD_Level: str
PEP_Status: str
Value_Date: str
Last_Review_Date: str
Next_Review_Date: str
Sanction_Description: str
Checker_Notes: str
Sanction_Context: str
Maker_Action: str
Customer_ID: int
Customer_Type: str
Industry: str
Transaction_Date_Time: str
Transaction_Type: str
Transaction_Channel: str
Originating_Bank: str
Beneficiary_Bank: str
Geographic_Origin: str
Geographic_Destination: str
Match_Score: float
Match_Type: str
Sanctions_List_Version: str
Screening_Date_Time: str
Risk_Category: str
Risk_Drivers: str
Alert_Status: str
Investigation_Outcome: str
Case_Owner_Analyst: str
Escalation_Level: str
Escalation_Date: str
Regulatory_Reporting_Flags: bool
Audit_Trail_Timestamp: str
Source_Of_Funds: str
Purpose_Of_Transaction: str
Beneficial_Owner: str
Sanctions_Exposure_History: bool
class PredictionRequest(BaseModel):
transaction_data: TransactionData
class DataPathInput(BaseModel):
data_path: str
@app.get("/")
def health_check():
return {"status": "healthy", "message": "logistic regression complience predictor API "}
@app.post("/train")
def train_model(input: DataPathInput):
try:
df = pd.read_csv(input.data_path)
df.dropna(subset=[TEXT_COLUMN] + LABEL_COLUMNS, inplace=True)
label_encoders = {}
for col in LABEL_COLUMNS:
le = LabelEncoder()
df[col] = le.fit_transform(df[col])
label_encoders[col] = le
tfidf = TfidfVectorizer(max_features=1000, ngram_range=(1, 2), stop_words="english")
X_vec = tfidf.fit_transform(df[TEXT_COLUMN])
y = df[LABEL_COLUMNS]
model = MultiOutputClassifier(LogisticRegression(max_iter=1000))
model.fit(X_vec, y)
joblib.dump(model, MODEL_PATH)
joblib.dump(tfidf, TFIDF_PATH)
joblib.dump(label_encoders, ENCODERS_PATH)
return {"status": "β
Logistic Regression model trained and saved."}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/validate")
def validate_model(input: DataPathInput):
try:
df = pd.read_csv(input.data_path)
required_columns = [TEXT_COLUMN] + LABEL_COLUMNS
missing = [col for col in required_columns if col not in df.columns]
if missing:
return {"status": "β Invalid input", "missing_columns": missing}
else:
return {"status": "β
Input is valid."}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Validation error: {str(e)}")
@app.post("/test")
def test_model(input: DataPathInput):
try:
df = pd.read_csv(input.data_path)
df = df.dropna(subset=[TEXT_COLUMN])
tfidf = joblib.load(TFIDF_PATH)
model = joblib.load(MODEL_PATH)
encoders = joblib.load(ENCODERS_PATH)
X_vec = tfidf.transform(df[TEXT_COLUMN])
preds = model.predict(X_vec)
decoded_preds = []
for pred in preds:
decoded = {
col: encoders[col].inverse_transform([label])[0]
for col, label in zip(LABEL_COLUMNS, pred)
}
decoded_preds.append(decoded)
return {"predictions": decoded_preds[:5]}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/predict")
def predict(request: PredictionRequest):
try:
input_data = pd.DataFrame([request.transaction_data.dict()])
text_input = " ".join([str(val) for val in input_data.iloc[0].values if pd.notna(val)])
tfidf = joblib.load(TFIDF_PATH)
model = joblib.load(MODEL_PATH)
encoders = joblib.load(ENCODERS_PATH)
X_vec = tfidf.transform([text_input])
pred = model.predict(X_vec)[0]
decoded = {
col: encoders[col].inverse_transform([p])[0]
for col, p in zip(LABEL_COLUMNS, pred)
}
return {"prediction": decoded}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/ttv")
def train_test_validate(input: DataPathInput):
try:
train_model(input)
validate_result = validate_model(input)
test_result = test_model(input)
return {
"train": "β
Done",
"validate": validate_result,
"test": test_result,
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
|