File size: 2,046 Bytes
12e3bc5
b5b4a63
 
 
 
 
12e3bc5
b5b4a63
 
 
 
 
 
 
 
 
 
 
12e3bc5
 
 
b5b4a63
 
 
 
12e3bc5
b5b4a63
 
 
 
 
 
 
 
 
12e3bc5
b5b4a63
 
 
 
12e3bc5
b5b4a63
 
 
 
 
 
 
12e3bc5
b5b4a63
 
12e3bc5
b5b4a63
 
12e3bc5
 
b5b4a63
 
 
 
 
 
 
12e3bc5
b5b4a63
 
12e3bc5
b5b4a63
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

import os
import pandas as pd
import joblib
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.multioutput import MultiOutputClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder

from config import (
    DATA_PATH, TEXT_COLUMN, LABEL_COLUMNS,
    MODEL_SAVE_DIR, LABEL_ENCODERS_PATH,
    TFIDF_MAX_FEATURES, NGRAM_RANGE,
    USE_STOPWORDS, RANDOM_STATE, TEST_SIZE
)

#  Ensure required directories are created
os.makedirs(MODEL_SAVE_DIR, exist_ok=True)

print(" Loading dataset...")
df = pd.read_csv(DATA_PATH)
df.dropna(subset=[TEXT_COLUMN] + LABEL_COLUMNS, inplace=True)

#  Encode each target label
label_encoders = {}
for col in LABEL_COLUMNS:
    le = LabelEncoder()
    df[col] = le.fit_transform(df[col])
    label_encoders[col] = le

X = df[TEXT_COLUMN]
Y = df[LABEL_COLUMNS]

print("✂️ Splitting train/test...")
X_train, X_test, y_train, y_test = train_test_split(
    X, Y, test_size=TEST_SIZE, random_state=RANDOM_STATE
)

print(" Building pipeline...")
stop_words = "english" if USE_STOPWORDS else None
pipeline = Pipeline([
    ('tfidf', TfidfVectorizer(
        max_features=TFIDF_MAX_FEATURES,
        ngram_range=NGRAM_RANGE,
        stop_words=stop_words
    )),
    ('clf', MultiOutputClassifier(LogisticRegression(max_iter=1000, random_state=RANDOM_STATE)))
])

print(" Training model...")
pipeline.fit(X_train, y_train)

#  Save full pipeline
model_path = os.path.join(MODEL_SAVE_DIR, "logreg_model.pkl")
print(f" Saving model to {model_path}")
joblib.dump(pipeline, model_path)

#  Save label encoders
print(f" Saving label encoders to {LABEL_ENCODERS_PATH}")
joblib.dump(label_encoders, LABEL_ENCODERS_PATH)

#  Save TF-IDF separately (optional)
tfidf_path = os.path.join(MODEL_SAVE_DIR, "tfidf_vectorizer.pkl")
print(f" Saving TF-IDF vectorizer to {tfidf_path}")
joblib.dump(pipeline.named_steps["tfidf"], tfidf_path)

print(" Training complete.")