File size: 5,277 Bytes
b44c3a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from fastapi import FastAPI, HTTPException, BackgroundTasks, UploadFile, File
from fastapi.responses import FileResponse
from pydantic import BaseModel
from typing import Optional, Dict, Any, List
import uvicorn
import torch
import logging
import os
import asyncio
import pandas as pd
from datetime import datetime
import shutil
from pathlib import Path
import numpy as np
import sys

# Add parent directory to Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))

from voting import perform_voting_ensemble, save_predictions
from config import LABEL_COLUMNS, PREDICTIONS_SAVE_DIR
from dataset_utils import load_label_encoders

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(title="Ensemble Voting API")

# Create necessary directories
UPLOAD_DIR = Path("uploads")
PREDICTIONS_DIR = Path(PREDICTIONS_SAVE_DIR)
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
PREDICTIONS_DIR.mkdir(parents=True, exist_ok=True)

class EnsembleConfig(BaseModel):
    model_names: List[str]
    weights: Optional[Dict[str, float]] = None

class EnsembleResponse(BaseModel):
    message: str
    metrics: Dict[str, Any]
    predictions: List[Dict[str, Any]]

class PredictionData(BaseModel):
    model_name: str
    probabilities: List[List[float]]
    true_labels: Optional[List[int]] = None

@app.get("/")
async def root():
    return {"message": "Ensemble Voting API"}

@app.get("/health")
async def health_check():
    return {"status": "healthy"}

@app.post("/ensemble/vote")
async def perform_ensemble(

    config: EnsembleConfig

):
    """Perform ensemble voting using specified models"""
    try:
        # Perform ensemble voting
        ensemble_reports, true_labels, ensemble_predictions = perform_voting_ensemble(config.model_names)
        
        # Load label encoders for decoding predictions
        label_encoders = load_label_encoders()
        
        # Format predictions with original labels
        formatted_predictions = []
        for i, (col, preds) in enumerate(zip(LABEL_COLUMNS, ensemble_predictions)):
            if true_labels[i] is not None:
                label_encoder = label_encoders[col]
                true_labels_orig = label_encoder.inverse_transform(true_labels[i])
                pred_labels_orig = label_encoder.inverse_transform(preds)
                
                for true, pred in zip(true_labels_orig, pred_labels_orig):
                    formatted_predictions.append({
                        "field": col,
                        "true_label": true,
                        "predicted_label": pred
                    })
        
        return EnsembleResponse(
            message="Ensemble voting completed successfully",
            metrics=ensemble_reports,
            predictions=formatted_predictions
        )
        
    except Exception as e:
        logger.error(f"Ensemble voting failed: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Ensemble voting failed: {str(e)}")

@app.post("/ensemble/save-predictions")
async def save_model_predictions(

    prediction_data: PredictionData

):
    """Save predictions from a model for later ensemble voting"""
    try:
        # Convert probabilities to numpy arrays
        all_probs = [np.array(probs) for probs in prediction_data.probabilities]
        true_labels = [np.array(prediction_data.true_labels) if prediction_data.true_labels else None]
        
        # Save predictions
        save_predictions(
            prediction_data.model_name,
            all_probs,
            true_labels
        )
        
        return {
            "message": f"Predictions saved successfully for model {prediction_data.model_name}",
            "model_name": prediction_data.model_name
        }
        
    except Exception as e:
        logger.error(f"Failed to save predictions: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Failed to save predictions: {str(e)}")

@app.get("/ensemble/available-models")
async def get_available_models():
    """Get list of models with saved predictions"""
    try:
        model_dirs = [d for d in os.listdir(PREDICTIONS_DIR) 
                     if os.path.isdir(os.path.join(PREDICTIONS_DIR, d))]
        
        available_models = []
        for model_name in model_dirs:
            model_dir = os.path.join(PREDICTIONS_DIR, model_name)
            has_all_files = all(
                os.path.exists(os.path.join(model_dir, f"{col}_probs.pkl"))
                for col in LABEL_COLUMNS
            )
            if has_all_files:
                available_models.append(model_name)
        
        return {
            "available_models": available_models,
            "total_models": len(available_models)
        }
        
    except Exception as e:
        logger.error(f"Failed to get available models: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Failed to get available models: {str(e)}")

if __name__ == "__main__":
    port = int(os.environ.get("PORT", 7861))
    uvicorn.run(app, host="0.0.0.0", port=port)