|
import pandas as pd |
|
import pickle |
|
import os |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.preprocessing import LabelEncoder |
|
from sklearn.model_selection import train_test_split |
|
import xgboost as xgb |
|
from config import ( |
|
DATA_PATH, TEXT_COLUMN, LABEL_COLUMNS, |
|
TFIDF_MAX_FEATURES, NGRAM_RANGE, USE_STOPWORDS, |
|
RANDOM_STATE, TEST_SIZE, |
|
MODEL_SAVE_DIR, LABEL_ENCODERS_PATH, TFIDF_VECTORIZER_PATH |
|
) |
|
|
|
def load_data(path): |
|
df = pd.read_csv(path) |
|
df.dropna(subset=[TEXT_COLUMN] + LABEL_COLUMNS, inplace=True) |
|
return df |
|
|
|
def save_pickle(obj, path): |
|
with open(path, "wb") as f: |
|
pickle.dump(obj, f) |
|
|
|
def train(): |
|
print(" Loading data...") |
|
df = load_data(DATA_PATH) |
|
X = df[TEXT_COLUMN] |
|
|
|
print(" Fitting TF-IDF...") |
|
stop_words = 'english' if USE_STOPWORDS else None |
|
tfidf = TfidfVectorizer( |
|
max_features=TFIDF_MAX_FEATURES, |
|
ngram_range=NGRAM_RANGE, |
|
stop_words=stop_words |
|
) |
|
X_tfidf = tfidf.fit_transform(X) |
|
|
|
print(f" Saving TF-IDF vectorizer to {TFIDF_VECTORIZER_PATH}") |
|
save_pickle(tfidf, TFIDF_VECTORIZER_PATH) |
|
|
|
models = {} |
|
label_encoders = {} |
|
|
|
for label in LABEL_COLUMNS: |
|
print(f"\n Processing label: {label}") |
|
le = LabelEncoder() |
|
y = le.fit_transform(df[label]) |
|
|
|
print(" Splitting train/test...") |
|
X_train, X_test, y_train, y_test = train_test_split( |
|
X_tfidf, y, test_size=TEST_SIZE, random_state=RANDOM_STATE |
|
) |
|
|
|
print(" Training XGBoost model...") |
|
model = xgb.XGBClassifier( |
|
use_label_encoder=False, |
|
eval_metric="mlogloss", |
|
random_state=RANDOM_STATE |
|
) |
|
model.fit(X_train, y_train) |
|
|
|
models[label] = model |
|
label_encoders[label] = le |
|
print(f" Finished training for: {label}") |
|
|
|
models_path = os.path.join(MODEL_SAVE_DIR, "xgb_models.pkl") |
|
print(f"\n Saving all models to: {models_path}") |
|
save_pickle(models, models_path) |
|
|
|
print(f" Saving label encoders to: {LABEL_ENCODERS_PATH}") |
|
save_pickle(label_encoders, LABEL_ENCODERS_PATH) |
|
|
|
print("\n Training complete.") |
|
|
|
if __name__ == "__main__": |
|
train() |
|
|