xgb_tfidf / train_xgb.py
subbunanepalli's picture
Rename models/train_xgb.py to train_xgb.py
b9cade7 verified
import pandas as pd
import pickle
import os
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import xgboost as xgb
from config import (
DATA_PATH, TEXT_COLUMN, LABEL_COLUMNS,
TFIDF_MAX_FEATURES, NGRAM_RANGE, USE_STOPWORDS,
RANDOM_STATE, TEST_SIZE,
MODEL_SAVE_DIR, LABEL_ENCODERS_PATH, TFIDF_VECTORIZER_PATH
)
def load_data(path):
df = pd.read_csv(path)
df.dropna(subset=[TEXT_COLUMN] + LABEL_COLUMNS, inplace=True)
return df
def save_pickle(obj, path):
with open(path, "wb") as f:
pickle.dump(obj, f)
def train():
print(" Loading data...")
df = load_data(DATA_PATH)
X = df[TEXT_COLUMN]
print(" Fitting TF-IDF...")
stop_words = 'english' if USE_STOPWORDS else None
tfidf = TfidfVectorizer(
max_features=TFIDF_MAX_FEATURES,
ngram_range=NGRAM_RANGE,
stop_words=stop_words
)
X_tfidf = tfidf.fit_transform(X)
print(f" Saving TF-IDF vectorizer to {TFIDF_VECTORIZER_PATH}")
save_pickle(tfidf, TFIDF_VECTORIZER_PATH)
models = {}
label_encoders = {}
for label in LABEL_COLUMNS:
print(f"\n Processing label: {label}")
le = LabelEncoder()
y = le.fit_transform(df[label])
print(" Splitting train/test...")
X_train, X_test, y_train, y_test = train_test_split(
X_tfidf, y, test_size=TEST_SIZE, random_state=RANDOM_STATE
)
print(" Training XGBoost model...")
model = xgb.XGBClassifier(
use_label_encoder=False,
eval_metric="mlogloss",
random_state=RANDOM_STATE
)
model.fit(X_train, y_train)
models[label] = model
label_encoders[label] = le
print(f" Finished training for: {label}")
models_path = os.path.join(MODEL_SAVE_DIR, "xgb_models.pkl")
print(f"\n Saving all models to: {models_path}")
save_pickle(models, models_path)
print(f" Saving label encoders to: {LABEL_ENCODERS_PATH}")
save_pickle(label_encoders, LABEL_ENCODERS_PATH)
print("\n Training complete.")
if __name__ == "__main__":
train()