Spaces:
Running
Running
File size: 5,501 Bytes
fcc054f 4e66058 fcc054f 4e66058 fcc054f 4e66058 fe6af28 e128654 bd38261 8dc1e51 4e66058 fcc054f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
from gradio_client import Client
from langgraph.graph import StateGraph, START, END
from typing import TypedDict, Optional
import io
from PIL import Image
import os
#OPEN QUESTION: SHOULD WE PASS ALL PARAMS FROM THE ORCHESTRATOR TO THE NODES INSTEAD OF SETTING IN EACH MODULE?
HF_TOKEN = os.environ.get("HF_TOKEN")
import configparser
import logging
import os
import ast
import re
from dotenv import load_dotenv
# Local .env file
load_dotenv()
def getconfig(configfile_path: str):
"""
Read the config file
Params
----------------
configfile_path: file path of .cfg file
"""
config = configparser.ConfigParser()
try:
config.read_file(open(configfile_path))
return config
except:
logging.warning("config file not found")
def get_auth(provider: str) -> dict:
"""Get authentication configuration for different providers"""
auth_configs = {
"huggingface": {"api_key": os.getenv("HF_TOKEN")},
"qdrant": {"api_key": os.getenv("QDRANT_API_KEY")},
}
provider = provider.lower() # Normalize to lowercase
if provider not in auth_configs:
raise ValueError(f"Unsupported provider: {provider}")
auth_config = auth_configs[provider]
api_key = auth_config.get("api_key")
if not api_key:
logging.warning(f"No API key found for provider '{provider}'. Please set the appropriate environment variable.")
auth_config["api_key"] = None
return auth_config
# Define the state schema
class GraphState(TypedDict):
query: str
context: str
result: str
# Add orchestrator-level parameters (addressing your open question)
reports_filter: str
sources_filter: str
subtype_filter: str
year_filter: str
# node 2: retriever
def retrieve_node(state: GraphState) -> GraphState:
client = Client("giz/chatfed_retriever", hf_token=HF_TOKEN) # HF repo name
context = client.predict(
query=state["query"],
reports_filter=state.get("reports_filter", ""),
sources_filter=state.get("sources_filter", ""),
subtype_filter=state.get("subtype_filter", ""),
year_filter=state.get("year_filter", ""),
api_name="/retrieve"
)
return {"context": context}
# node 3: generator
def generate_node(state: GraphState) -> GraphState:
client = Client("giz/chatfed_generator", hf_token=HF_TOKEN)
result = client.predict(
query=state["query"],
context=state["context"],
api_name="/generate"
)
return {"result": result}
# build the graph
workflow = StateGraph(GraphState)
# Add nodes
workflow.add_node("retrieve", retrieve_node)
workflow.add_node("generate", generate_node)
# Add edges
workflow.add_edge(START, "retrieve")
workflow.add_edge("retrieve", "generate")
workflow.add_edge("generate", END)
# Compile the graph
graph = workflow.compile()
# Single tool for processing queries
def process_query(
query: str,
reports_filter: str = "",
sources_filter: str = "",
subtype_filter: str = "",
year_filter: str = ""
) -> str:
"""
Execute the ChatFed orchestration pipeline to process a user query.
This function orchestrates a two-step workflow:
1. Retrieve relevant context using the ChatFed retriever service with optional filters
2. Generate a response using the ChatFed generator service with the retrieved context
Args:
query (str): The user's input query/question to be processed
reports_filter (str, optional): Filter for specific report types. Defaults to "".
sources_filter (str, optional): Filter for specific data sources. Defaults to "".
subtype_filter (str, optional): Filter for document subtypes. Defaults to "".
year_filter (str, optional): Filter for specific years. Defaults to "".
Returns:
str: The generated response from the ChatFed generator service
"""
initial_state = {
"query": query,
"context": "",
"result": "",
"reports_filter": reports_filter or "",
"sources_filter": sources_filter or "",
"subtype_filter": subtype_filter or "",
"year_filter": year_filter or ""
}
final_state = graph.invoke(initial_state)
return final_state["result"]
# Simple testing interface
# Guidance for ChatUI - can be removed later. Questionable whether front end even necessary. Maybe nice to show the graph.
with gr.Blocks(title="ChatFed Orchestrator") as demo:
with gr.Row():
# Left column - Graph visualization
with gr.Column():
query_input = gr.Textbox(
label="query",
lines=2,
placeholder="Enter your search query here",
info="The query to search for in the vector database"
)
submit_btn = gr.Button("Submit", variant="primary")
# Right column - Interface and documentation
with gr.Column():
output = gr.Textbox(
label="answer",
lines=10,
show_copy_button=True
)
# UI event handler
submit_btn.click(
fn=process_query,
inputs=query_input,
outputs=output,
api_name="process_query"
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
mcp_server=True,
show_error=True
) |