Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
import fitz
|
4 |
import faiss
|
5 |
import numpy as np
|
6 |
from sentence_transformers import SentenceTransformer
|
@@ -8,31 +8,21 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from huggingface_hub import login
|
10 |
|
11 |
-
# Load Hugging Face Token from environment
|
12 |
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
13 |
if not hf_token:
|
14 |
-
raise ValueError("
|
15 |
login(token=hf_token)
|
16 |
|
17 |
-
# Load embedding model
|
18 |
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
|
19 |
|
20 |
-
# Load small, fast LLM (great for CPU)
|
21 |
model_id = "tiiuae/falcon-rw-1b"
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
|
23 |
-
model = AutoModelForCausalLM.from_pretrained(
|
24 |
-
model_id,
|
25 |
-
device_map={"": "cpu"},
|
26 |
-
torch_dtype="auto",
|
27 |
-
token=hf_token
|
28 |
-
)
|
29 |
llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
30 |
|
31 |
-
# Globals
|
32 |
index = None
|
33 |
doc_texts = []
|
34 |
|
35 |
-
# Extract text from PDF or TXT (handle Hugging Face Spaces file upload)
|
36 |
def extract_text(file):
|
37 |
text = ""
|
38 |
file_path = file.name if hasattr(file, 'name') else file
|
@@ -44,14 +34,13 @@ def extract_text(file):
|
|
44 |
with open(file_path, "r", encoding="utf-8") as f:
|
45 |
text = f.read()
|
46 |
else:
|
47 |
-
return "
|
48 |
return text
|
49 |
|
50 |
-
# Process file and build FAISS index
|
51 |
def process_file(file):
|
52 |
global index, doc_texts
|
53 |
text = extract_text(file)
|
54 |
-
if text.startswith("
|
55 |
return text
|
56 |
|
57 |
splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
|
@@ -62,40 +51,39 @@ def process_file(file):
|
|
62 |
index = faiss.IndexFlatL2(dim)
|
63 |
index.add(embeddings)
|
64 |
|
65 |
-
return "
|
66 |
|
67 |
-
# Generate answer
|
68 |
def generate_answer(question):
|
69 |
global index, doc_texts
|
70 |
if index is None or not doc_texts:
|
71 |
-
return "
|
72 |
|
73 |
question_emb = embed_model.encode([question], convert_to_numpy=True)
|
74 |
_, I = index.search(question_emb, k=3)
|
75 |
context = "\n".join([doc_texts[i] for i in I[0]])
|
76 |
|
77 |
-
prompt =
|
78 |
-
|
79 |
-
|
80 |
-
{context}
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
85 |
result = llm(prompt, max_new_tokens=200, do_sample=True, temperature=0.7)
|
86 |
return result[0]["generated_text"].split("Answer:")[-1].strip()
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
gr.Markdown("
|
91 |
|
92 |
with gr.Row():
|
93 |
-
file_input = gr.File(label="
|
94 |
-
upload_output = gr.Textbox(label="Upload Status"
|
95 |
|
96 |
with gr.Row():
|
97 |
-
question_input = gr.Textbox(label="
|
98 |
-
answer_output = gr.Textbox(label="
|
99 |
|
100 |
file_input.change(fn=process_file, inputs=file_input, outputs=upload_output)
|
101 |
question_input.submit(fn=generate_answer, inputs=question_input, outputs=answer_output)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
import fitz
|
4 |
import faiss
|
5 |
import numpy as np
|
6 |
from sentence_transformers import SentenceTransformer
|
|
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from huggingface_hub import login
|
10 |
|
|
|
11 |
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
12 |
if not hf_token:
|
13 |
+
raise ValueError("Hugging Face token not found.")
|
14 |
login(token=hf_token)
|
15 |
|
|
|
16 |
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
|
17 |
|
|
|
18 |
model_id = "tiiuae/falcon-rw-1b"
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"": "cpu"}, torch_dtype="auto", token=hf_token)
|
|
|
|
|
|
|
|
|
|
|
21 |
llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
22 |
|
|
|
23 |
index = None
|
24 |
doc_texts = []
|
25 |
|
|
|
26 |
def extract_text(file):
|
27 |
text = ""
|
28 |
file_path = file.name if hasattr(file, 'name') else file
|
|
|
34 |
with open(file_path, "r", encoding="utf-8") as f:
|
35 |
text = f.read()
|
36 |
else:
|
37 |
+
return "Unsupported file type."
|
38 |
return text
|
39 |
|
|
|
40 |
def process_file(file):
|
41 |
global index, doc_texts
|
42 |
text = extract_text(file)
|
43 |
+
if text.startswith("Unsupported"):
|
44 |
return text
|
45 |
|
46 |
splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
|
|
|
51 |
index = faiss.IndexFlatL2(dim)
|
52 |
index.add(embeddings)
|
53 |
|
54 |
+
return "Document processed successfully. You can now ask questions."
|
55 |
|
|
|
56 |
def generate_answer(question):
|
57 |
global index, doc_texts
|
58 |
if index is None or not doc_texts:
|
59 |
+
return "Please upload and process a document first."
|
60 |
|
61 |
question_emb = embed_model.encode([question], convert_to_numpy=True)
|
62 |
_, I = index.search(question_emb, k=3)
|
63 |
context = "\n".join([doc_texts[i] for i in I[0]])
|
64 |
|
65 |
+
prompt = (
|
66 |
+
f"You are an intelligent assistant. Use the context below to answer the user's question clearly, "
|
67 |
+
f"politely, and completely. Do not just extract text β give a helpful response.\n\n"
|
68 |
+
f"Context:\n{context}\n\n"
|
69 |
+
f"User's Question: {question}\n\n"
|
70 |
+
f"Answer:"
|
71 |
+
)
|
72 |
|
73 |
result = llm(prompt, max_new_tokens=200, do_sample=True, temperature=0.7)
|
74 |
return result[0]["generated_text"].split("Answer:")[-1].strip()
|
75 |
|
76 |
+
with gr.Blocks(title="Document Q&A Assistant") as demo:
|
77 |
+
gr.Markdown("<h1 style='text-align: center;'>π Document AI Assistant</h1>")
|
78 |
+
gr.Markdown("Upload a PDF or TXT file, and ask questions about its content. The assistant will provide answers using the document as context.")
|
79 |
|
80 |
with gr.Row():
|
81 |
+
file_input = gr.File(label="Upload PDF or TXT", file_types=[".pdf", ".txt"])
|
82 |
+
upload_output = gr.Textbox(label="Upload Status")
|
83 |
|
84 |
with gr.Row():
|
85 |
+
question_input = gr.Textbox(label="Ask a Question", placeholder="What is this document about?")
|
86 |
+
answer_output = gr.Textbox(label="Answer")
|
87 |
|
88 |
file_input.change(fn=process_file, inputs=file_input, outputs=upload_output)
|
89 |
question_input.submit(fn=generate_answer, inputs=question_input, outputs=answer_output)
|