Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,11 +9,12 @@ import docx
|
|
9 |
import io
|
10 |
import os
|
11 |
import re
|
12 |
-
from typing import List, Optional
|
|
|
13 |
|
14 |
-
class
|
15 |
def __init__(self):
|
16 |
-
print("π Initializing RAG System...")
|
17 |
|
18 |
# Initialize embedding model (lightweight)
|
19 |
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
@@ -24,17 +25,20 @@ class DocumentRAG:
|
|
24 |
|
25 |
# Document storage
|
26 |
self.documents = []
|
|
|
27 |
self.index = None
|
28 |
self.is_indexed = False
|
29 |
-
self.raw_text = ""
|
|
|
|
|
30 |
|
31 |
def setup_llm(self):
|
32 |
-
"""Setup quantized Mistral model"""
|
33 |
try:
|
34 |
# Check if CUDA is available
|
35 |
if not torch.cuda.is_available():
|
36 |
-
print("β οΈ CUDA not available,
|
37 |
-
self.
|
38 |
return
|
39 |
|
40 |
quantization_config = BitsAndBytesConfig(
|
@@ -46,17 +50,14 @@ class DocumentRAG:
|
|
46 |
|
47 |
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
48 |
|
49 |
-
# Load tokenizer first
|
50 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
51 |
model_name,
|
52 |
trust_remote_code=True
|
53 |
)
|
54 |
|
55 |
-
# Fix padding token issue
|
56 |
if self.tokenizer.pad_token is None:
|
57 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
58 |
|
59 |
-
# Load model with quantization
|
60 |
self.model = AutoModelForCausalLM.from_pretrained(
|
61 |
model_name,
|
62 |
quantization_config=quantization_config,
|
@@ -69,169 +70,104 @@ class DocumentRAG:
|
|
69 |
print("β
Quantized Mistral model loaded successfully")
|
70 |
|
71 |
except Exception as e:
|
72 |
-
print(f"β Error loading
|
73 |
-
print("π Falling back to
|
74 |
-
self.
|
75 |
|
76 |
-
def
|
77 |
-
"""
|
78 |
try:
|
79 |
-
# Use
|
80 |
-
model_name = "
|
81 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
82 |
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
83 |
|
84 |
-
# Fix padding token for fallback model too
|
85 |
if self.tokenizer.pad_token is None:
|
86 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
87 |
|
88 |
-
print("β
|
89 |
except Exception as e:
|
90 |
-
print(f"β
|
91 |
-
# Try an even simpler approach - return context-based answers without generation
|
92 |
self.model = None
|
93 |
self.tokenizer = None
|
94 |
-
print("β οΈ Using context-only mode
|
95 |
|
96 |
-
def
|
97 |
-
"""
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
}
|
106 |
|
107 |
-
|
108 |
-
current_section = None
|
109 |
-
|
110 |
-
for line in lines:
|
111 |
-
line = line.strip()
|
112 |
-
if not line:
|
113 |
-
continue
|
114 |
-
|
115 |
-
line_lower = line.lower()
|
116 |
-
|
117 |
-
# Extract name (usually first meaningful line)
|
118 |
-
if not profile['name'] and len(line.split()) <= 4 and not any(char in line for char in ['@', '.com', '+91', 'linkedin']):
|
119 |
-
if not any(word in line_lower for word in ['resume', 'cv', 'experience', 'education', 'skills']):
|
120 |
-
profile['name'] = line
|
121 |
-
|
122 |
-
# Look for role/title indicators
|
123 |
-
if any(keyword in line_lower for keyword in ['data scientist', 'software engineer', 'developer', 'analyst', 'intern']):
|
124 |
-
if 'data scientist' in line_lower:
|
125 |
-
profile['role'] = 'Data Scientist'
|
126 |
-
elif 'software engineer' in line_lower:
|
127 |
-
profile['role'] = 'Software Engineer'
|
128 |
-
elif 'developer' in line_lower:
|
129 |
-
profile['role'] = 'Developer'
|
130 |
-
elif 'analyst' in line_lower:
|
131 |
-
profile['role'] = 'Analyst'
|
132 |
-
|
133 |
-
# Extract skills
|
134 |
-
if any(keyword in line_lower for keyword in ['python', 'machine learning', 'react', 'javascript', 'sql']):
|
135 |
-
if 'python' in line_lower:
|
136 |
-
profile['skills'].append('Python')
|
137 |
-
if 'machine learning' in line_lower:
|
138 |
-
profile['skills'].append('Machine Learning')
|
139 |
-
if 'react' in line_lower:
|
140 |
-
profile['skills'].append('React')
|
141 |
-
if 'javascript' in line_lower:
|
142 |
-
profile['skills'].append('JavaScript')
|
143 |
-
|
144 |
-
return profile
|
145 |
|
146 |
-
def
|
147 |
-
"""
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
query_lower = query.lower()
|
152 |
-
|
153 |
-
# Extract profile information first
|
154 |
-
profile = self.extract_profile_info(self.raw_text if self.raw_text else context)
|
155 |
-
|
156 |
-
# Handle "who is" questions specifically
|
157 |
-
if "who is" in query_lower:
|
158 |
-
name_in_query = re.search(r'who is (\w+)', query_lower)
|
159 |
-
person_name = name_in_query.group(1) if name_in_query else "this person"
|
160 |
|
161 |
-
|
162 |
-
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
answer_parts.append(f"{profile['name']} is a {profile['role']}")
|
167 |
-
else:
|
168 |
-
# Try to infer role from context
|
169 |
-
context_lower = context.lower()
|
170 |
-
if 'data scientist' in context_lower or ('python' in context_lower and 'machine learning' in context_lower):
|
171 |
-
answer_parts.append(f"{profile['name']} is a Data Scientist")
|
172 |
-
elif 'software' in context_lower and 'developer' in context_lower:
|
173 |
-
answer_parts.append(f"{profile['name']} is a Software Developer")
|
174 |
-
else:
|
175 |
-
answer_parts.append(f"{profile['name']} is a professional")
|
176 |
-
else:
|
177 |
-
# Use name from query
|
178 |
-
context_lower = context.lower()
|
179 |
-
if 'data scientist' in context_lower or ('python' in context_lower and 'machine learning' in context_lower):
|
180 |
-
answer_parts.append(f"{person_name.title()} is a Data Scientist")
|
181 |
-
elif 'software' in context_lower and 'developer' in context_lower:
|
182 |
-
answer_parts.append(f"{person_name.title()} is a Software Developer")
|
183 |
-
else:
|
184 |
-
answer_parts.append(f"{person_name.title()} is a professional")
|
185 |
-
|
186 |
-
# Add key skills if available
|
187 |
-
if profile['skills']:
|
188 |
-
top_skills = profile['skills'][:3] # Top 3 skills
|
189 |
-
answer_parts.append(f"with expertise in {', '.join(top_skills)}")
|
190 |
-
|
191 |
-
if answer_parts:
|
192 |
-
return '. '.join(answer_parts) + '.'
|
193 |
-
|
194 |
-
# Handle other question types
|
195 |
-
elif any(keyword in query_lower for keyword in ['what', 'skills', 'experience', 'work']):
|
196 |
-
if 'skills' in query_lower:
|
197 |
-
if profile['skills']:
|
198 |
-
return f"Key skills include: {', '.join(profile['skills'])}."
|
199 |
-
elif 'experience' in query_lower or 'work' in query_lower:
|
200 |
-
# Look for experience indicators in context
|
201 |
-
exp_lines = []
|
202 |
-
for line in context.split('\n'):
|
203 |
-
if any(word in line.lower() for word in ['experience', 'worked', 'internship', 'project']):
|
204 |
-
exp_lines.append(line.strip())
|
205 |
-
if exp_lines:
|
206 |
-
return exp_lines[0]
|
207 |
-
|
208 |
-
# Fallback to keyword matching
|
209 |
-
query_words = set(query_lower.split())
|
210 |
-
context_sentences = [s.strip() for s in context.split('.') if s.strip()]
|
211 |
-
|
212 |
-
# Find most relevant sentence
|
213 |
-
best_sentence = ""
|
214 |
-
max_matches = 0
|
215 |
-
|
216 |
-
for sentence in context_sentences:
|
217 |
-
if len(sentence) < 20: # Skip very short sentences
|
218 |
-
continue
|
219 |
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
return "Based on the document, I found relevant information but cannot provide a specific answer."
|
232 |
|
233 |
def extract_text_from_file(self, file_path: str) -> str:
|
234 |
-
"""Extract text from various file formats"""
|
235 |
try:
|
236 |
file_extension = os.path.splitext(file_path)[1].lower()
|
237 |
|
@@ -248,99 +184,121 @@ class DocumentRAG:
|
|
248 |
return f"Error reading file: {str(e)}"
|
249 |
|
250 |
def extract_from_pdf(self, file_path: str) -> str:
|
251 |
-
"""
|
252 |
text = ""
|
253 |
try:
|
254 |
with open(file_path, 'rb') as file:
|
255 |
pdf_reader = PyPDF2.PdfReader(file)
|
256 |
-
for page in pdf_reader.pages:
|
257 |
-
|
|
|
|
|
258 |
except Exception as e:
|
259 |
text = f"Error reading PDF: {str(e)}"
|
260 |
return text
|
261 |
|
262 |
def extract_from_docx(self, file_path: str) -> str:
|
263 |
-
"""
|
264 |
try:
|
265 |
doc = docx.Document(file_path)
|
266 |
text = ""
|
267 |
for paragraph in doc.paragraphs:
|
268 |
-
|
|
|
269 |
return text
|
270 |
except Exception as e:
|
271 |
return f"Error reading DOCX: {str(e)}"
|
272 |
|
273 |
def extract_from_txt(self, file_path: str) -> str:
|
274 |
-
"""
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
except Exception as e:
|
279 |
try:
|
280 |
-
with open(file_path, 'r', encoding=
|
281 |
return file.read()
|
282 |
-
except
|
283 |
-
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
def
|
286 |
-
"""
|
287 |
if not text.strip():
|
288 |
return []
|
289 |
|
290 |
chunks = []
|
291 |
-
lines = text.split('\n')
|
292 |
-
|
293 |
-
# Create chunks based on semantic meaning
|
294 |
-
current_chunk = ""
|
295 |
-
chunk_type = None
|
296 |
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
new_chunk_type = 'skills'
|
314 |
-
elif any(keyword in line_lower for keyword in ['project', 'developed', 'built']):
|
315 |
-
new_chunk_type = 'projects'
|
316 |
-
|
317 |
-
# If section type changes, save current chunk and start new one
|
318 |
-
if new_chunk_type != chunk_type and current_chunk:
|
319 |
-
chunks.append(current_chunk.strip())
|
320 |
-
current_chunk = line
|
321 |
-
chunk_type = new_chunk_type
|
322 |
-
else:
|
323 |
-
# Add to current chunk
|
324 |
-
if current_chunk:
|
325 |
-
current_chunk += "\n" + line
|
326 |
-
else:
|
327 |
current_chunk = line
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
current_chunk
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
return chunks
|
341 |
|
342 |
def process_documents(self, files) -> str:
|
343 |
-
"""
|
344 |
if not files:
|
345 |
return "β No files uploaded!"
|
346 |
|
@@ -363,15 +321,24 @@ class DocumentRAG:
|
|
363 |
if not all_text.strip():
|
364 |
return "β No text extracted from files!"
|
365 |
|
366 |
-
# Store raw text
|
367 |
self.raw_text = all_text
|
368 |
|
369 |
-
#
|
370 |
-
self.
|
|
|
|
|
|
|
371 |
|
372 |
-
|
|
|
|
|
|
|
373 |
return "β No valid text chunks created!"
|
374 |
|
|
|
|
|
|
|
375 |
# Create embeddings
|
376 |
print(f"π Creating embeddings for {len(self.documents)} chunks...")
|
377 |
embeddings = self.embedder.encode(self.documents, show_progress_bar=True)
|
@@ -388,16 +355,18 @@ class DocumentRAG:
|
|
388 |
|
389 |
return f"β
Successfully processed {len(processed_files)} files:\n" + \
|
390 |
f"π Files: {', '.join(processed_files)}\n" + \
|
391 |
-
f"π
|
392 |
-
f"π
|
|
|
|
|
393 |
|
394 |
except Exception as e:
|
395 |
return f"β Error processing documents: {str(e)}"
|
396 |
|
397 |
-
def
|
398 |
-
"""
|
399 |
if not self.is_indexed:
|
400 |
-
return ""
|
401 |
|
402 |
try:
|
403 |
# Get query embedding
|
@@ -405,139 +374,226 @@ class DocumentRAG:
|
|
405 |
faiss.normalize_L2(query_embedding)
|
406 |
|
407 |
# Search for similar chunks
|
408 |
-
scores, indices = self.index.search(query_embedding.astype('float32'), min(k, len(self.documents)))
|
409 |
|
410 |
-
#
|
411 |
-
relevant_docs = []
|
412 |
query_lower = query.lower()
|
|
|
|
|
|
|
|
|
413 |
|
414 |
for i, idx in enumerate(indices[0]):
|
415 |
if idx < len(self.documents):
|
416 |
-
doc = self.documents[idx]
|
417 |
score = scores[0][i]
|
|
|
|
|
|
|
|
|
418 |
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
|
|
|
|
|
|
|
|
435 |
|
436 |
except Exception as e:
|
437 |
print(f"Error in retrieval: {e}")
|
438 |
-
return ""
|
439 |
|
440 |
-
def
|
441 |
-
"""Generate
|
442 |
-
if
|
443 |
-
return
|
444 |
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
|
454 |
-
|
455 |
-
{context[:
|
456 |
|
457 |
Question: {query}
|
458 |
|
459 |
-
Provide a
|
460 |
-
|
461 |
-
|
462 |
-
|
|
|
|
|
|
|
|
|
463 |
|
464 |
Question: {query}
|
465 |
-
Answer briefly:"""
|
466 |
|
467 |
-
|
468 |
-
inputs = self.tokenizer(
|
469 |
-
prompt,
|
470 |
-
return_tensors="pt",
|
471 |
-
max_length=600,
|
472 |
-
truncation=True,
|
473 |
-
padding=True
|
474 |
-
)
|
475 |
-
|
476 |
-
# Move to same device as model
|
477 |
-
if torch.cuda.is_available() and next(self.model.parameters()).is_cuda:
|
478 |
-
inputs = {k: v.cuda() for k, v in inputs.items()}
|
479 |
-
|
480 |
-
# Generate with focused parameters
|
481 |
-
with torch.no_grad():
|
482 |
-
outputs = self.model.generate(
|
483 |
-
**inputs,
|
484 |
-
max_new_tokens=50, # Much shorter for focused answers
|
485 |
-
temperature=0.1, # Very low for deterministic responses
|
486 |
-
do_sample=True,
|
487 |
-
top_p=0.9,
|
488 |
-
early_stopping=True,
|
489 |
-
repetition_penalty=1.1,
|
490 |
-
pad_token_id=self.tokenizer.pad_token_id,
|
491 |
-
eos_token_id=self.tokenizer.eos_token_id
|
492 |
-
)
|
493 |
-
|
494 |
-
# Decode response
|
495 |
-
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
496 |
-
|
497 |
-
# Extract answer
|
498 |
-
if is_mistral and "[/INST]" in full_response:
|
499 |
-
answer = full_response.split("[/INST]")[-1].strip()
|
500 |
-
else:
|
501 |
-
answer = full_response[len(prompt):].strip()
|
502 |
-
|
503 |
-
# Clean and validate answer
|
504 |
-
answer = self.clean_answer(answer)
|
505 |
-
|
506 |
-
# If answer is too long or poor quality, use fallback
|
507 |
-
if not answer or len(answer) > 200:
|
508 |
-
return self.simple_context_answer(query, context)
|
509 |
-
|
510 |
-
return answer
|
511 |
-
|
512 |
-
except Exception as e:
|
513 |
-
print(f"Error in generation: {e}")
|
514 |
-
return self.simple_context_answer(query, context)
|
515 |
|
516 |
-
def
|
517 |
-
"""
|
518 |
-
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
# Remove unwanted patterns
|
522 |
answer = re.sub(r'--- \w+.*? ---', '', answer)
|
523 |
-
answer = re.sub(r'\
|
524 |
-
answer = re.sub(r'\+91-?\d+', '', answer) # Remove phone numbers
|
525 |
-
answer = answer.replace('LinkedIn:', '').replace('Github:', '')
|
526 |
|
527 |
-
# Clean up whitespace
|
528 |
answer = ' '.join(answer.split())
|
529 |
|
530 |
-
#
|
531 |
-
|
532 |
-
|
533 |
-
first_sentence = sentences[0].strip()
|
534 |
-
if len(first_sentence) > 10:
|
535 |
-
return first_sentence + '.'
|
536 |
|
537 |
return answer.strip()
|
538 |
|
539 |
def answer_question(self, query: str) -> str:
|
540 |
-
"""Main function to answer questions"""
|
541 |
if not query.strip():
|
542 |
return "β Please ask a question!"
|
543 |
|
@@ -545,52 +601,59 @@ Answer briefly:"""
|
|
545 |
return "π Please upload and process documents first!"
|
546 |
|
547 |
try:
|
548 |
-
#
|
549 |
-
|
|
|
|
|
|
|
|
|
|
|
550 |
|
551 |
if not context:
|
552 |
-
return "π No relevant information found
|
553 |
|
554 |
-
# Generate answer
|
555 |
-
answer = self.
|
556 |
|
557 |
-
if answer
|
558 |
-
return answer
|
559 |
-
else:
|
560 |
-
return "I couldn't generate a specific answer from the document content."
|
561 |
|
562 |
except Exception as e:
|
563 |
-
return f"β Error
|
564 |
|
565 |
-
# Initialize the RAG system
|
566 |
-
print("Initializing Document RAG System...")
|
567 |
-
rag_system =
|
568 |
|
569 |
-
# Gradio Interface
|
570 |
def create_interface():
|
571 |
-
with gr.Blocks(title="
|
572 |
gr.Markdown("""
|
573 |
-
#
|
574 |
|
575 |
-
Upload
|
576 |
|
577 |
-
**
|
|
|
|
|
|
|
|
|
578 |
""")
|
579 |
|
580 |
-
with gr.Tab("π€ Upload
|
581 |
with gr.Row():
|
582 |
with gr.Column():
|
583 |
file_upload = gr.File(
|
584 |
-
label="Upload Documents",
|
585 |
file_count="multiple",
|
586 |
-
file_types=[".pdf", ".docx", ".txt"]
|
|
|
587 |
)
|
588 |
-
process_btn = gr.Button("π Process Documents", variant="primary")
|
589 |
|
590 |
with gr.Column():
|
591 |
process_status = gr.Textbox(
|
592 |
-
label="Processing Status",
|
593 |
-
lines=
|
594 |
interactive=False
|
595 |
)
|
596 |
|
@@ -600,20 +663,23 @@ def create_interface():
|
|
600 |
outputs=[process_status]
|
601 |
)
|
602 |
|
603 |
-
with gr.Tab("β
|
604 |
with gr.Row():
|
605 |
with gr.Column():
|
606 |
question_input = gr.Textbox(
|
607 |
-
label="
|
608 |
-
placeholder="
|
609 |
lines=3
|
610 |
)
|
611 |
-
|
|
|
|
|
|
|
612 |
|
613 |
with gr.Column():
|
614 |
answer_output = gr.Textbox(
|
615 |
-
label="Answer",
|
616 |
-
lines=
|
617 |
interactive=False
|
618 |
)
|
619 |
|
@@ -623,19 +689,58 @@ def create_interface():
|
|
623 |
outputs=[answer_output]
|
624 |
)
|
625 |
|
626 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
627 |
gr.Markdown("""
|
628 |
-
###
|
629 |
-
|
630 |
-
|
631 |
-
-
|
632 |
-
-
|
633 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
634 |
""")
|
635 |
|
636 |
return demo
|
637 |
|
638 |
-
# Launch the app
|
639 |
if __name__ == "__main__":
|
640 |
demo = create_interface()
|
641 |
demo.launch(
|
|
|
9 |
import io
|
10 |
import os
|
11 |
import re
|
12 |
+
from typing import List, Optional, Dict, Tuple
|
13 |
+
import json
|
14 |
|
15 |
+
class SmartDocumentRAG:
|
16 |
def __init__(self):
|
17 |
+
print("π Initializing Smart RAG System...")
|
18 |
|
19 |
# Initialize embedding model (lightweight)
|
20 |
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
25 |
|
26 |
# Document storage
|
27 |
self.documents = []
|
28 |
+
self.document_metadata = [] # Store metadata about each chunk
|
29 |
self.index = None
|
30 |
self.is_indexed = False
|
31 |
+
self.raw_text = ""
|
32 |
+
self.document_type = "general" # Auto-detect document type
|
33 |
+
self.document_summary = "" # Store document summary
|
34 |
|
35 |
def setup_llm(self):
|
36 |
+
"""Setup quantized Mistral model with fallback"""
|
37 |
try:
|
38 |
# Check if CUDA is available
|
39 |
if not torch.cuda.is_available():
|
40 |
+
print("β οΈ CUDA not available, using CPU-optimized model")
|
41 |
+
self.setup_cpu_model()
|
42 |
return
|
43 |
|
44 |
quantization_config = BitsAndBytesConfig(
|
|
|
50 |
|
51 |
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
52 |
|
|
|
53 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
54 |
model_name,
|
55 |
trust_remote_code=True
|
56 |
)
|
57 |
|
|
|
58 |
if self.tokenizer.pad_token is None:
|
59 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
60 |
|
|
|
61 |
self.model = AutoModelForCausalLM.from_pretrained(
|
62 |
model_name,
|
63 |
quantization_config=quantization_config,
|
|
|
70 |
print("β
Quantized Mistral model loaded successfully")
|
71 |
|
72 |
except Exception as e:
|
73 |
+
print(f"β Error loading Mistral: {e}")
|
74 |
+
print("π Falling back to CPU model...")
|
75 |
+
self.setup_cpu_model()
|
76 |
|
77 |
+
def setup_cpu_model(self):
|
78 |
+
"""Setup CPU-friendly model"""
|
79 |
try:
|
80 |
+
# Use GPT-2 for better text generation on CPU
|
81 |
+
model_name = "gpt2-medium"
|
82 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
83 |
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
84 |
|
|
|
85 |
if self.tokenizer.pad_token is None:
|
86 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
87 |
|
88 |
+
print("β
CPU model loaded")
|
89 |
except Exception as e:
|
90 |
+
print(f"β CPU model failed: {e}")
|
|
|
91 |
self.model = None
|
92 |
self.tokenizer = None
|
93 |
+
print("β οΈ Using context-only mode")
|
94 |
|
95 |
+
def detect_document_type(self, text: str) -> str:
|
96 |
+
"""Intelligently detect document type"""
|
97 |
+
text_lower = text.lower()
|
98 |
+
|
99 |
+
# Count keywords for different document types
|
100 |
+
resume_keywords = ['experience', 'skills', 'education', 'linkedin', 'email', 'phone', 'internship']
|
101 |
+
research_keywords = ['abstract', 'introduction', 'methodology', 'conclusion', 'references', 'study', 'analysis']
|
102 |
+
business_keywords = ['company', 'revenue', 'market', 'strategy', 'business', 'financial', 'quarter']
|
103 |
+
technical_keywords = ['implementation', 'algorithm', 'system', 'technical', 'specification', 'architecture']
|
104 |
+
legal_keywords = ['contract', 'agreement', 'terms', 'conditions', 'legal', 'clause', 'liability']
|
105 |
+
|
106 |
+
scores = {
|
107 |
+
'resume': sum(1 for kw in resume_keywords if kw in text_lower),
|
108 |
+
'research': sum(1 for kw in research_keywords if kw in text_lower),
|
109 |
+
'business': sum(1 for kw in business_keywords if kw in text_lower),
|
110 |
+
'technical': sum(1 for kw in technical_keywords if kw in text_lower),
|
111 |
+
'legal': sum(1 for kw in legal_keywords if kw in text_lower)
|
112 |
}
|
113 |
|
114 |
+
return max(scores, key=scores.get) if max(scores.values()) > 2 else 'general'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
def create_document_summary(self, text: str) -> str:
|
117 |
+
"""Create intelligent document summary"""
|
118 |
+
try:
|
119 |
+
# Split into paragraphs and find key information
|
120 |
+
paragraphs = [p.strip() for p in text.split('\n\n') if p.strip() and len(p) > 50]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
if not paragraphs:
|
123 |
+
return "Document contains basic text information."
|
124 |
|
125 |
+
# Take first few paragraphs for summary context
|
126 |
+
summary_text = ' '.join(paragraphs[:3])[:1000]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
if self.model and self.tokenizer:
|
129 |
+
# Generate AI summary
|
130 |
+
prompt = f"""Summarize the following document in 2-3 sentences, focusing on the main points and key information:
|
131 |
+
|
132 |
+
{summary_text}
|
133 |
+
|
134 |
+
Summary:"""
|
135 |
+
|
136 |
+
try:
|
137 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
|
138 |
+
if torch.cuda.is_available() and next(self.model.parameters()).is_cuda:
|
139 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
140 |
+
|
141 |
+
with torch.no_grad():
|
142 |
+
outputs = self.model.generate(
|
143 |
+
**inputs,
|
144 |
+
max_new_tokens=100,
|
145 |
+
temperature=0.7,
|
146 |
+
do_sample=True,
|
147 |
+
top_p=0.9,
|
148 |
+
pad_token_id=self.tokenizer.pad_token_id
|
149 |
+
)
|
150 |
+
|
151 |
+
summary = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
152 |
+
summary = summary.split("Summary:")[-1].strip()
|
153 |
+
|
154 |
+
if len(summary) > 20:
|
155 |
+
return summary
|
156 |
+
|
157 |
+
except Exception as e:
|
158 |
+
print(f"Error generating AI summary: {e}")
|
159 |
|
160 |
+
# Fallback: Extract key sentences
|
161 |
+
sentences = re.split(r'[.!?]+', summary_text)
|
162 |
+
key_sentences = [s.strip() for s in sentences if len(s.strip()) > 30][:2]
|
163 |
+
|
164 |
+
return '. '.join(key_sentences) + '.' if key_sentences else "Document contains relevant information."
|
165 |
+
|
166 |
+
except Exception as e:
|
167 |
+
return "Document summary not available."
|
|
|
168 |
|
169 |
def extract_text_from_file(self, file_path: str) -> str:
|
170 |
+
"""Extract text from various file formats with better error handling"""
|
171 |
try:
|
172 |
file_extension = os.path.splitext(file_path)[1].lower()
|
173 |
|
|
|
184 |
return f"Error reading file: {str(e)}"
|
185 |
|
186 |
def extract_from_pdf(self, file_path: str) -> str:
|
187 |
+
"""Enhanced PDF extraction"""
|
188 |
text = ""
|
189 |
try:
|
190 |
with open(file_path, 'rb') as file:
|
191 |
pdf_reader = PyPDF2.PdfReader(file)
|
192 |
+
for page_num, page in enumerate(pdf_reader.pages):
|
193 |
+
page_text = page.extract_text()
|
194 |
+
if page_text.strip():
|
195 |
+
text += f"\n[Page {page_num + 1}]\n{page_text}\n"
|
196 |
except Exception as e:
|
197 |
text = f"Error reading PDF: {str(e)}"
|
198 |
return text
|
199 |
|
200 |
def extract_from_docx(self, file_path: str) -> str:
|
201 |
+
"""Enhanced DOCX extraction"""
|
202 |
try:
|
203 |
doc = docx.Document(file_path)
|
204 |
text = ""
|
205 |
for paragraph in doc.paragraphs:
|
206 |
+
if paragraph.text.strip():
|
207 |
+
text += paragraph.text + "\n"
|
208 |
return text
|
209 |
except Exception as e:
|
210 |
return f"Error reading DOCX: {str(e)}"
|
211 |
|
212 |
def extract_from_txt(self, file_path: str) -> str:
|
213 |
+
"""Enhanced TXT extraction with encoding detection"""
|
214 |
+
encodings = ['utf-8', 'latin-1', 'cp1252', 'iso-8859-1']
|
215 |
+
|
216 |
+
for encoding in encodings:
|
|
|
217 |
try:
|
218 |
+
with open(file_path, 'r', encoding=encoding) as file:
|
219 |
return file.read()
|
220 |
+
except UnicodeDecodeError:
|
221 |
+
continue
|
222 |
+
except Exception as e:
|
223 |
+
return f"Error reading TXT: {str(e)}"
|
224 |
+
|
225 |
+
return "Error: Could not decode file with any supported encoding"
|
226 |
|
227 |
+
def intelligent_chunk_text(self, text: str, doc_type: str) -> List[Dict]:
|
228 |
+
"""Intelligent chunking based on document type"""
|
229 |
if not text.strip():
|
230 |
return []
|
231 |
|
232 |
chunks = []
|
233 |
+
lines = [line.strip() for line in text.split('\n') if line.strip()]
|
|
|
|
|
|
|
|
|
234 |
|
235 |
+
if doc_type == 'research':
|
236 |
+
# For research papers, chunk by sections
|
237 |
+
current_chunk = ""
|
238 |
+
current_section = "introduction"
|
239 |
|
240 |
+
for line in lines:
|
241 |
+
line_lower = line.lower()
|
242 |
+
|
243 |
+
# Detect section headers
|
244 |
+
if any(header in line_lower for header in ['abstract', 'introduction', 'methodology', 'results', 'conclusion', 'references']):
|
245 |
+
if current_chunk:
|
246 |
+
chunks.append({
|
247 |
+
'text': current_chunk.strip(),
|
248 |
+
'section': current_section,
|
249 |
+
'doc_type': doc_type
|
250 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
current_chunk = line
|
252 |
+
current_section = line_lower.split()[0] if line_lower.split() else "section"
|
253 |
+
else:
|
254 |
+
current_chunk += "\n" + line
|
255 |
+
|
256 |
+
# Limit chunk size
|
257 |
+
if len(current_chunk.split()) > 200:
|
258 |
+
chunks.append({
|
259 |
+
'text': current_chunk.strip(),
|
260 |
+
'section': current_section,
|
261 |
+
'doc_type': doc_type
|
262 |
+
})
|
263 |
+
current_chunk = ""
|
264 |
+
|
265 |
+
if current_chunk:
|
266 |
+
chunks.append({
|
267 |
+
'text': current_chunk.strip(),
|
268 |
+
'section': current_section,
|
269 |
+
'doc_type': doc_type
|
270 |
+
})
|
271 |
+
|
272 |
+
else:
|
273 |
+
# General intelligent chunking
|
274 |
+
current_chunk = ""
|
275 |
+
sentence_count = 0
|
276 |
+
|
277 |
+
for line in lines:
|
278 |
+
current_chunk += line + "\n"
|
279 |
+
sentence_count += len(re.findall(r'[.!?]+', line))
|
280 |
+
|
281 |
+
# Create chunk based on sentence count or word count
|
282 |
+
if sentence_count >= 5 or len(current_chunk.split()) > 150:
|
283 |
+
chunks.append({
|
284 |
+
'text': current_chunk.strip(),
|
285 |
+
'section': 'content',
|
286 |
+
'doc_type': doc_type
|
287 |
+
})
|
288 |
+
current_chunk = ""
|
289 |
+
sentence_count = 0
|
290 |
+
|
291 |
+
if current_chunk:
|
292 |
+
chunks.append({
|
293 |
+
'text': current_chunk.strip(),
|
294 |
+
'section': 'content',
|
295 |
+
'doc_type': doc_type
|
296 |
+
})
|
297 |
|
298 |
return chunks
|
299 |
|
300 |
def process_documents(self, files) -> str:
|
301 |
+
"""Enhanced document processing with intelligent analysis"""
|
302 |
if not files:
|
303 |
return "β No files uploaded!"
|
304 |
|
|
|
321 |
if not all_text.strip():
|
322 |
return "β No text extracted from files!"
|
323 |
|
324 |
+
# Store raw text
|
325 |
self.raw_text = all_text
|
326 |
|
327 |
+
# Detect document type
|
328 |
+
self.document_type = self.detect_document_type(all_text)
|
329 |
+
|
330 |
+
# Create document summary
|
331 |
+
self.document_summary = self.create_document_summary(all_text)
|
332 |
|
333 |
+
# Intelligent chunking
|
334 |
+
chunk_data = self.intelligent_chunk_text(all_text, self.document_type)
|
335 |
+
|
336 |
+
if not chunk_data:
|
337 |
return "β No valid text chunks created!"
|
338 |
|
339 |
+
self.documents = [chunk['text'] for chunk in chunk_data]
|
340 |
+
self.document_metadata = chunk_data
|
341 |
+
|
342 |
# Create embeddings
|
343 |
print(f"π Creating embeddings for {len(self.documents)} chunks...")
|
344 |
embeddings = self.embedder.encode(self.documents, show_progress_bar=True)
|
|
|
355 |
|
356 |
return f"β
Successfully processed {len(processed_files)} files:\n" + \
|
357 |
f"π Files: {', '.join(processed_files)}\n" + \
|
358 |
+
f"π Document Type: {self.document_type.title()}\n" + \
|
359 |
+
f"π Created {len(self.documents)} intelligent chunks\n" + \
|
360 |
+
f"π Summary: {self.document_summary[:200]}...\n" + \
|
361 |
+
f"π Ready for smart Q&A!"
|
362 |
|
363 |
except Exception as e:
|
364 |
return f"β Error processing documents: {str(e)}"
|
365 |
|
366 |
+
def smart_retrieve_context(self, query: str, k: int = 4) -> Tuple[str, List[Dict]]:
|
367 |
+
"""Enhanced context retrieval with intelligent ranking"""
|
368 |
if not self.is_indexed:
|
369 |
+
return "", []
|
370 |
|
371 |
try:
|
372 |
# Get query embedding
|
|
|
374 |
faiss.normalize_L2(query_embedding)
|
375 |
|
376 |
# Search for similar chunks
|
377 |
+
scores, indices = self.index.search(query_embedding.astype('float32'), min(k * 2, len(self.documents)))
|
378 |
|
379 |
+
# Analyze query intent
|
|
|
380 |
query_lower = query.lower()
|
381 |
+
is_summary_request = any(word in query_lower for word in ['summary', 'summarize', 'overview', 'what is', 'about'])
|
382 |
+
is_specific_request = any(word in query_lower for word in ['how', 'why', 'when', 'where', 'which'])
|
383 |
+
|
384 |
+
relevant_chunks = []
|
385 |
|
386 |
for i, idx in enumerate(indices[0]):
|
387 |
if idx < len(self.documents):
|
|
|
388 |
score = scores[0][i]
|
389 |
+
chunk_data = self.document_metadata[idx]
|
390 |
+
|
391 |
+
# Adjust scoring based on query type and document structure
|
392 |
+
adjusted_score = score
|
393 |
|
394 |
+
if is_summary_request:
|
395 |
+
# Boost introductory sections for summary requests
|
396 |
+
if chunk_data['section'] in ['introduction', 'abstract', 'content']:
|
397 |
+
adjusted_score += 0.1
|
398 |
+
|
399 |
+
if adjusted_score > 0.15: # Threshold for relevance
|
400 |
+
relevant_chunks.append({
|
401 |
+
'text': self.documents[idx],
|
402 |
+
'score': adjusted_score,
|
403 |
+
'metadata': chunk_data
|
404 |
+
})
|
405 |
+
|
406 |
+
# Sort by adjusted score
|
407 |
+
relevant_chunks.sort(key=lambda x: x['score'], reverse=True)
|
408 |
+
|
409 |
+
# Take top chunks
|
410 |
+
top_chunks = relevant_chunks[:k]
|
411 |
+
context = "\n\n".join([chunk['text'] for chunk in top_chunks])
|
412 |
+
|
413 |
+
return context, top_chunks
|
414 |
|
415 |
except Exception as e:
|
416 |
print(f"Error in retrieval: {e}")
|
417 |
+
return "", []
|
418 |
|
419 |
+
def generate_smart_answer(self, query: str, context: str, chunks_data: List[Dict]) -> str:
|
420 |
+
"""Generate intelligent answers based on query type and context"""
|
421 |
+
if not context:
|
422 |
+
return "No relevant information found in the documents."
|
423 |
|
424 |
+
query_lower = query.lower()
|
425 |
+
|
426 |
+
# Determine answer type
|
427 |
+
is_summary_request = any(word in query_lower for word in ['summary', 'summarize', 'overview', 'what is', 'about'])
|
428 |
+
is_comparison_request = any(word in query_lower for word in ['compare', 'difference', 'versus', 'vs'])
|
429 |
+
is_specific_question = any(word in query_lower for word in ['how', 'why', 'when', 'where', 'which'])
|
430 |
+
|
431 |
+
if self.model and self.tokenizer:
|
432 |
+
try:
|
433 |
+
# Create intelligent prompt based on query type
|
434 |
+
if is_summary_request:
|
435 |
+
prompt = self.create_summary_prompt(query, context)
|
436 |
+
elif is_comparison_request:
|
437 |
+
prompt = self.create_comparison_prompt(query, context)
|
438 |
+
else:
|
439 |
+
prompt = self.create_general_prompt(query, context)
|
440 |
+
|
441 |
+
# Generate response
|
442 |
+
inputs = self.tokenizer(
|
443 |
+
prompt,
|
444 |
+
return_tensors="pt",
|
445 |
+
max_length=800,
|
446 |
+
truncation=True,
|
447 |
+
padding=True
|
448 |
+
)
|
449 |
+
|
450 |
+
if torch.cuda.is_available() and next(self.model.parameters()).is_cuda:
|
451 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
452 |
+
|
453 |
+
with torch.no_grad():
|
454 |
+
outputs = self.model.generate(
|
455 |
+
**inputs,
|
456 |
+
max_new_tokens=150,
|
457 |
+
temperature=0.3,
|
458 |
+
do_sample=True,
|
459 |
+
top_p=0.9,
|
460 |
+
repetition_penalty=1.1,
|
461 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
462 |
+
eos_token_id=self.tokenizer.eos_token_id
|
463 |
+
)
|
464 |
+
|
465 |
+
# Extract and clean answer
|
466 |
+
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
467 |
+
answer = self.extract_answer_from_response(full_response, prompt)
|
468 |
+
|
469 |
+
if answer and len(answer) > 20:
|
470 |
+
return self.clean_and_validate_answer(answer)
|
471 |
+
|
472 |
+
except Exception as e:
|
473 |
+
print(f"Error in AI generation: {e}")
|
474 |
+
|
475 |
+
# Fallback to intelligent context-based answering
|
476 |
+
return self.context_based_smart_answer(query, context, chunks_data)
|
477 |
+
|
478 |
+
def create_summary_prompt(self, query: str, context: str) -> str:
|
479 |
+
"""Create prompt for summary requests"""
|
480 |
+
return f"""Based on the document content below, provide a comprehensive summary addressing the question.
|
481 |
|
482 |
+
Document Content:
|
483 |
+
{context[:1000]}
|
484 |
|
485 |
Question: {query}
|
486 |
|
487 |
+
Provide a clear, informative summary that addresses the question:"""
|
488 |
+
|
489 |
+
def create_comparison_prompt(self, query: str, context: str) -> str:
|
490 |
+
"""Create prompt for comparison requests"""
|
491 |
+
return f"""Analyze the document content and provide a comparison as requested.
|
492 |
+
|
493 |
+
Document Content:
|
494 |
+
{context[:1000]}
|
495 |
|
496 |
Question: {query}
|
|
|
497 |
|
498 |
+
Provide a detailed comparison based on the information:"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
|
500 |
+
def create_general_prompt(self, query: str, context: str) -> str:
|
501 |
+
"""Create prompt for general questions"""
|
502 |
+
return f"""Answer the question based on the document content provided.
|
503 |
+
|
504 |
+
Document Content:
|
505 |
+
{context[:1000]}
|
506 |
+
|
507 |
+
Question: {query}
|
508 |
+
|
509 |
+
Provide a specific, accurate answer:"""
|
510 |
+
|
511 |
+
def extract_answer_from_response(self, response: str, prompt: str) -> str:
|
512 |
+
"""Extract clean answer from model response"""
|
513 |
+
# Remove the prompt part
|
514 |
+
if prompt in response:
|
515 |
+
answer = response.replace(prompt, "").strip()
|
516 |
+
else:
|
517 |
+
# Try to find the answer after common patterns
|
518 |
+
patterns = ["Answer:", "Summary:", "Response:", "answer:", "summary:", "response:"]
|
519 |
+
answer = response
|
520 |
+
for pattern in patterns:
|
521 |
+
if pattern in response:
|
522 |
+
answer = response.split(pattern)[-1].strip()
|
523 |
+
break
|
524 |
+
|
525 |
+
return answer
|
526 |
+
|
527 |
+
def context_based_smart_answer(self, query: str, context: str, chunks_data: List[Dict]) -> str:
|
528 |
+
"""Intelligent context-based answering as fallback"""
|
529 |
+
query_lower = query.lower()
|
530 |
+
|
531 |
+
# For summary requests
|
532 |
+
if any(word in query_lower for word in ['summary', 'summarize', 'overview', 'about']):
|
533 |
+
return self.create_context_summary(context, chunks_data)
|
534 |
+
|
535 |
+
# For specific questions, find most relevant sentences
|
536 |
+
context_sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
|
537 |
+
query_words = set(query_lower.split())
|
538 |
+
|
539 |
+
# Score sentences by relevance
|
540 |
+
scored_sentences = []
|
541 |
+
for sentence in context_sentences:
|
542 |
+
sentence_words = set(sentence.lower().split())
|
543 |
+
overlap = len(query_words.intersection(sentence_words))
|
544 |
+
if overlap > 0:
|
545 |
+
scored_sentences.append((sentence, overlap))
|
546 |
+
|
547 |
+
# Sort by relevance and combine top sentences
|
548 |
+
scored_sentences.sort(key=lambda x: x[1], reverse=True)
|
549 |
+
|
550 |
+
if scored_sentences:
|
551 |
+
top_sentences = [s[0] for s in scored_sentences[:3]]
|
552 |
+
return '. '.join(top_sentences) + '.'
|
553 |
|
554 |
+
return "I found relevant information but couldn't extract a specific answer. Please try rephrasing your question."
|
555 |
+
|
556 |
+
def create_context_summary(self, context: str, chunks_data: List[Dict]) -> str:
|
557 |
+
"""Create summary from context"""
|
558 |
+
# Get key sentences from different sections
|
559 |
+
sentences_by_section = {}
|
560 |
+
|
561 |
+
for chunk in chunks_data:
|
562 |
+
section = chunk['metadata']['section']
|
563 |
+
sentences = [s.strip() for s in chunk['text'].split('.') if len(s.strip()) > 30]
|
564 |
+
if sentences:
|
565 |
+
if section not in sentences_by_section:
|
566 |
+
sentences_by_section[section] = []
|
567 |
+
sentences_by_section[section].extend(sentences[:2]) # Top 2 sentences per section
|
568 |
+
|
569 |
+
# Combine sentences from different sections
|
570 |
+
summary_parts = []
|
571 |
+
for section, sentences in sentences_by_section.items():
|
572 |
+
if sentences:
|
573 |
+
summary_parts.extend(sentences[:1]) # One sentence per section
|
574 |
+
|
575 |
+
if summary_parts:
|
576 |
+
return '. '.join(summary_parts[:4]) + '.' # Max 4 sentences
|
577 |
+
|
578 |
+
return self.document_summary if self.document_summary else "Document contains relevant information on the requested topic."
|
579 |
+
|
580 |
+
def clean_and_validate_answer(self, answer: str) -> str:
|
581 |
+
"""Clean and validate the generated answer"""
|
582 |
# Remove unwanted patterns
|
583 |
answer = re.sub(r'--- \w+.*? ---', '', answer)
|
584 |
+
answer = re.sub(r'\[Page \d+\]', '', answer)
|
|
|
|
|
585 |
|
586 |
+
# Clean up whitespace and formatting
|
587 |
answer = ' '.join(answer.split())
|
588 |
|
589 |
+
# Ensure proper sentence structure
|
590 |
+
if answer and not answer.endswith(('.', '!', '?')):
|
591 |
+
answer += '.'
|
|
|
|
|
|
|
592 |
|
593 |
return answer.strip()
|
594 |
|
595 |
def answer_question(self, query: str) -> str:
|
596 |
+
"""Main function to answer questions intelligently"""
|
597 |
if not query.strip():
|
598 |
return "β Please ask a question!"
|
599 |
|
|
|
601 |
return "π Please upload and process documents first!"
|
602 |
|
603 |
try:
|
604 |
+
# Special handling for document-level questions
|
605 |
+
query_lower = query.lower()
|
606 |
+
if query_lower in ['summary', 'summarize this document', 'what is this about']:
|
607 |
+
return f"π Document Summary:\n\n{self.document_summary}"
|
608 |
+
|
609 |
+
# Retrieve relevant context with intelligence
|
610 |
+
context, chunks_data = self.smart_retrieve_context(query, k=4)
|
611 |
|
612 |
if not context:
|
613 |
+
return "π No relevant information found for your question. Try rephrasing or asking about different aspects of the document."
|
614 |
|
615 |
+
# Generate intelligent answer
|
616 |
+
answer = self.generate_smart_answer(query, context, chunks_data)
|
617 |
|
618 |
+
return answer if answer else "I couldn't generate a specific answer. Please try asking in a different way."
|
|
|
|
|
|
|
619 |
|
620 |
except Exception as e:
|
621 |
+
return f"β Error processing question: {str(e)}"
|
622 |
|
623 |
+
# Initialize the enhanced RAG system
|
624 |
+
print("Initializing Smart Document RAG System...")
|
625 |
+
rag_system = SmartDocumentRAG()
|
626 |
|
627 |
+
# Enhanced Gradio Interface
|
628 |
def create_interface():
|
629 |
+
with gr.Blocks(title="π§ Smart Document Q&A", theme=gr.themes.Soft()) as demo:
|
630 |
gr.Markdown("""
|
631 |
+
# π§ Smart Document Q&A System
|
632 |
|
633 |
+
Upload documents and get intelligent answers with summaries and insights!
|
634 |
|
635 |
+
**Features:**
|
636 |
+
- π― Intelligent document type detection
|
637 |
+
- π Smart summarization
|
638 |
+
- π Context-aware answers
|
639 |
+
- π Multi-format support (PDF, DOCX, TXT)
|
640 |
""")
|
641 |
|
642 |
+
with gr.Tab("π€ Upload & Process"):
|
643 |
with gr.Row():
|
644 |
with gr.Column():
|
645 |
file_upload = gr.File(
|
646 |
+
label="π Upload Documents",
|
647 |
file_count="multiple",
|
648 |
+
file_types=[".pdf", ".docx", ".txt"],
|
649 |
+
height=150
|
650 |
)
|
651 |
+
process_btn = gr.Button("π Process Documents", variant="primary", size="lg")
|
652 |
|
653 |
with gr.Column():
|
654 |
process_status = gr.Textbox(
|
655 |
+
label="π Processing Status & Document Analysis",
|
656 |
+
lines=10,
|
657 |
interactive=False
|
658 |
)
|
659 |
|
|
|
663 |
outputs=[process_status]
|
664 |
)
|
665 |
|
666 |
+
with gr.Tab("β Smart Q&A"):
|
667 |
with gr.Row():
|
668 |
with gr.Column():
|
669 |
question_input = gr.Textbox(
|
670 |
+
label="π€ Ask Anything",
|
671 |
+
placeholder="What is this document about? / Summarize the main points / How does X work?",
|
672 |
lines=3
|
673 |
)
|
674 |
+
|
675 |
+
with gr.Row():
|
676 |
+
ask_btn = gr.Button("π§ Get Smart Answer", variant="primary")
|
677 |
+
summary_btn = gr.Button("π Get Summary", variant="secondary")
|
678 |
|
679 |
with gr.Column():
|
680 |
answer_output = gr.Textbox(
|
681 |
+
label="π‘ Smart Answer",
|
682 |
+
lines=8,
|
683 |
interactive=False
|
684 |
)
|
685 |
|
|
|
689 |
outputs=[answer_output]
|
690 |
)
|
691 |
|
692 |
+
summary_btn.click(
|
693 |
+
fn=lambda: rag_system.answer_question("summary"),
|
694 |
+
inputs=[],
|
695 |
+
outputs=[answer_output]
|
696 |
+
)
|
697 |
+
|
698 |
+
# Enhanced example questions
|
699 |
+
gr.Markdown("""
|
700 |
+
### π‘ Smart Question Examples:
|
701 |
+
|
702 |
+
**π For Summaries:**
|
703 |
+
- "What is this document about?"
|
704 |
+
- "Summarize the main points"
|
705 |
+
- "Give me an overview"
|
706 |
+
|
707 |
+
**π For Specific Information:**
|
708 |
+
- "How does [topic] work?"
|
709 |
+
- "What are the key findings?"
|
710 |
+
- "Explain [concept] from the document"
|
711 |
+
|
712 |
+
**π― For Analysis:**
|
713 |
+
- "What are the pros and cons?"
|
714 |
+
- "Compare [A] and [B]"
|
715 |
+
- "What conclusions can be drawn?"
|
716 |
+
""")
|
717 |
+
|
718 |
+
with gr.Tab("βΉοΈ Tips"):
|
719 |
gr.Markdown("""
|
720 |
+
### π How to Get the Best Results:
|
721 |
+
|
722 |
+
**π Document Types Supported:**
|
723 |
+
- Research papers & academic documents
|
724 |
+
- Business reports & presentations
|
725 |
+
- Technical documentation
|
726 |
+
- Legal documents
|
727 |
+
- General text documents
|
728 |
+
|
729 |
+
**β Question Tips:**
|
730 |
+
- Be specific about what you want to know
|
731 |
+
- Use "summarize" or "overview" for general summaries
|
732 |
+
- Ask "how", "why", "what" for detailed explanations
|
733 |
+
- Request comparisons with "compare" or "difference"
|
734 |
+
|
735 |
+
**π― Best Practices:**
|
736 |
+
- Upload clear, well-formatted documents
|
737 |
+
- Ask one question at a time for focused answers
|
738 |
+
- Try rephrasing if the first answer isn't what you expected
|
739 |
""")
|
740 |
|
741 |
return demo
|
742 |
|
743 |
+
# Launch the enhanced app
|
744 |
if __name__ == "__main__":
|
745 |
demo = create_interface()
|
746 |
demo.launch(
|