Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,265 +1,158 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
import faiss
|
4 |
-
import docx
|
5 |
-
import PyPDF2
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
-
|
|
|
|
|
|
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
from transformers import pipeline
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
class SmartDocumentRAG:
|
14 |
-
def __init__(self
|
15 |
-
|
16 |
-
self.embedder = SentenceTransformer(
|
17 |
-
|
18 |
-
# Load Q&A pipeline model
|
19 |
-
self.qa_pipeline = pipeline('question-answering', model=qa_model, tokenizer=qa_model)
|
20 |
-
|
21 |
-
# Document and index initialization
|
22 |
self.documents = []
|
23 |
-
self.
|
24 |
-
self.raw_text = ""
|
25 |
-
self.document_summary = ""
|
26 |
-
self.document_type = ""
|
27 |
self.index = None
|
28 |
self.is_indexed = False
|
29 |
-
self.model_type = "distilbert-qa" # Can add flan-t5 or others as needed
|
30 |
-
|
31 |
-
####################
|
32 |
-
# Text Extraction
|
33 |
-
####################
|
34 |
-
def extract_text_from_file(self, file_path: str) -> str:
|
35 |
-
ext = os.path.splitext(file_path)[1].lower()
|
36 |
-
try:
|
37 |
-
if ext == '.pdf':
|
38 |
-
return self.extract_from_pdf(file_path)
|
39 |
-
elif ext == '.docx':
|
40 |
-
return self.extract_from_docx(file_path)
|
41 |
-
elif ext == '.txt':
|
42 |
-
return self.extract_from_txt(file_path)
|
43 |
-
else:
|
44 |
-
return f"Unsupported file type: {ext}"
|
45 |
-
except Exception as e:
|
46 |
-
return f"Error reading file: {e}"
|
47 |
-
|
48 |
-
def extract_from_pdf(self, file_path: str) -> str:
|
49 |
-
text = ""
|
50 |
-
try:
|
51 |
-
with open(file_path, 'rb') as f:
|
52 |
-
reader = PyPDF2.PdfReader(f)
|
53 |
-
for page in reader.pages:
|
54 |
-
txt = page.extract_text() or ""
|
55 |
-
cleaned = self.clean_text(txt)
|
56 |
-
text += cleaned + "\n"
|
57 |
-
return text.strip()
|
58 |
-
except Exception as e:
|
59 |
-
return f"Error reading PDF: {e}"
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
return f"Error reading DOCX: {e}"
|
68 |
-
|
69 |
-
def extract_from_txt(self, file_path: str) -> str:
|
70 |
-
encodings = ['utf-8', 'latin-1', 'cp1252', 'iso-8859-1']
|
71 |
-
for enc in encodings:
|
72 |
-
try:
|
73 |
-
with open(file_path, 'r', encoding=enc) as f:
|
74 |
-
return self.clean_text(f.read())
|
75 |
-
except UnicodeDecodeError:
|
76 |
-
continue
|
77 |
-
except Exception as e:
|
78 |
-
return f"Error reading TXT: {e}"
|
79 |
-
return "Could not decode TXT file."
|
80 |
-
|
81 |
-
def clean_text(self, text: str) -> str:
|
82 |
-
# Normalize whitespace, fix broken words, remove weird chars
|
83 |
-
text = re.sub(r'\s+', ' ', text)
|
84 |
-
text = re.sub(r'([a-z])([A-Z])', r'\1 \2', text) # Fix camel case merges
|
85 |
-
text = text.strip()
|
86 |
-
return text
|
87 |
-
|
88 |
-
####################
|
89 |
-
# Document Type Detection & Summary
|
90 |
-
####################
|
91 |
-
def detect_document_type(self, text: str) -> str:
|
92 |
-
lower_text = text.lower()
|
93 |
-
if any(k in lower_text for k in ['abstract', 'study', 'research', 'methodology']):
|
94 |
-
return 'research'
|
95 |
-
elif any(k in lower_text for k in ['company', 'business', 'organization', 'financial']):
|
96 |
-
return 'business'
|
97 |
else:
|
98 |
-
|
99 |
|
100 |
-
|
101 |
-
sentences = re.split(r'(?<=[.!?]) +', text)
|
102 |
-
sentences = [s.strip() for s in sentences if len(s.strip()) > 10]
|
103 |
|
104 |
-
|
105 |
-
return self.extract_research_summary(sentences)
|
106 |
-
elif self.document_type == 'business':
|
107 |
-
return self.extract_business_summary(sentences)
|
108 |
-
else:
|
109 |
-
return self.extract_general_summary(sentences)
|
110 |
-
|
111 |
-
def extract_research_summary(self, sentences: List[str]) -> str:
|
112 |
-
for s in sentences[:7]:
|
113 |
-
if any(w in s.lower() for w in ['abstract', 'study', 'research']):
|
114 |
-
return s[:300] + ('...' if len(s) > 300 else '')
|
115 |
-
return sentences[0][:300] if sentences else "Research document."
|
116 |
-
|
117 |
-
def extract_business_summary(self, sentences: List[str]) -> str:
|
118 |
-
for s in sentences[:5]:
|
119 |
-
if any(w in s.lower() for w in ['company', 'business', 'organization']):
|
120 |
-
return s[:300] + ('...' if len(s) > 300 else '')
|
121 |
-
return sentences[0][:300] if sentences else "Business document."
|
122 |
-
|
123 |
-
def extract_general_summary(self, sentences: List[str]) -> str:
|
124 |
-
return sentences[0][:300] + ('...' if len(sentences[0]) > 300 else '') if sentences else "General document."
|
125 |
-
|
126 |
-
####################
|
127 |
-
# Chunking
|
128 |
-
####################
|
129 |
-
def enhanced_chunk_text(self, text: str, chunk_size: int = 3, overlap: int = 1) -> List[Dict]:
|
130 |
-
if not text.strip():
|
131 |
-
return []
|
132 |
-
|
133 |
-
sentences = re.split(r'(?<=[.!?]) +', text)
|
134 |
-
sentences = [s.strip() for s in sentences if len(s.strip()) > 10]
|
135 |
-
|
136 |
-
chunks = []
|
137 |
-
for i in range(0, len(sentences), chunk_size - overlap):
|
138 |
-
chunk_sents = sentences[i:i + chunk_size]
|
139 |
-
if chunk_sents:
|
140 |
-
chunk_text = " ".join(chunk_sents)
|
141 |
-
chunks.append({
|
142 |
-
"text": chunk_text,
|
143 |
-
"sentence_indices": list(range(i, min(i + chunk_size, len(sentences)))),
|
144 |
-
"doc_type": self.document_type
|
145 |
-
})
|
146 |
-
return chunks
|
147 |
-
|
148 |
-
####################
|
149 |
-
# Processing uploaded files
|
150 |
-
####################
|
151 |
-
def process_documents(self, files) -> str:
|
152 |
if not files:
|
153 |
-
return "
|
|
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
all_text += " " + file_text
|
165 |
-
processed_files.append(os.path.basename(file.name))
|
166 |
-
else:
|
167 |
-
return f"β {file_text}"
|
168 |
-
|
169 |
-
if not all_text.strip():
|
170 |
-
return "β No text extracted from files!"
|
171 |
-
|
172 |
-
self.raw_text = all_text.strip()
|
173 |
-
self.document_type = self.detect_document_type(self.raw_text)
|
174 |
-
self.document_summary = self.create_document_summary(self.raw_text)
|
175 |
-
|
176 |
-
chunks = self.enhanced_chunk_text(self.raw_text)
|
177 |
-
if not chunks:
|
178 |
-
return "β No valid chunks created!"
|
179 |
|
180 |
-
|
181 |
-
|
182 |
|
183 |
-
|
184 |
-
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
self.index.add(embeddings.astype('float32'))
|
189 |
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
f"π Summary: {self.document_summary}\n"
|
196 |
-
f"π Ready for Q&A!")
|
197 |
|
198 |
-
|
199 |
-
return f"β Error processing documents: {e}"
|
200 |
|
201 |
-
|
202 |
-
# Search & Answer
|
203 |
-
####################
|
204 |
-
def find_relevant_content(self, query: str, top_k: int = 3) -> str:
|
205 |
if not self.is_indexed:
|
206 |
return ""
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
k = min(top_k, len(self.documents))
|
213 |
-
scores, indices = self.index.search(query_embedding.astype('float32'), k)
|
214 |
-
|
215 |
-
relevant_chunks = []
|
216 |
-
for score, idx in zip(scores[0], indices[0]):
|
217 |
-
if idx < len(self.documents) and score > 0.15:
|
218 |
-
relevant_chunks.append(self.documents[idx])
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
225 |
|
226 |
def answer_question(self, query: str) -> str:
|
227 |
if not query.strip():
|
228 |
return "β Please ask a valid question."
|
229 |
-
|
230 |
if not self.is_indexed:
|
231 |
-
return "π Please upload and process documents
|
232 |
-
|
233 |
query_lower = query.lower()
|
234 |
-
|
235 |
if any(word in query_lower for word in ['summary', 'summarize', 'overview', 'about']):
|
236 |
-
|
237 |
-
|
238 |
-
else:
|
239 |
-
return "β οΈ Summary not available. Please process documents first."
|
240 |
-
|
241 |
context = self.find_relevant_content(query, k=5)
|
242 |
-
print(f"Context
|
243 |
-
|
244 |
if not context:
|
245 |
-
return "π Sorry, no relevant information
|
246 |
-
|
247 |
try:
|
248 |
-
if self.model_type
|
249 |
result = self.qa_pipeline(question=query, context=context)
|
250 |
-
print(f"QA
|
251 |
answer = result.get('answer', '').strip()
|
252 |
score = result.get('score', 0.0)
|
253 |
-
|
254 |
if not answer or score < 0.05:
|
255 |
-
return "π€ I couldn't find a confident answer
|
256 |
-
|
257 |
snippet = context[:300].strip()
|
258 |
if len(context) > 300:
|
259 |
snippet += "..."
|
260 |
-
|
261 |
return f"**Answer:** {answer}\n\n*Context snippet:* {snippet}"
|
262 |
-
|
263 |
elif self.model_type == "flan-t5":
|
264 |
prompt = (
|
265 |
f"Answer the question based on the context below.\n\n"
|
@@ -267,98 +160,57 @@ class SmartDocumentRAG:
|
|
267 |
f"Question: {query}\nAnswer:"
|
268 |
)
|
269 |
result = self.qa_pipeline(prompt, max_length=200, num_return_sequences=1)
|
270 |
-
print(f"Generative pipeline
|
271 |
-
|
272 |
answer = result[0]['generated_text'].replace(prompt, '').strip()
|
273 |
if not answer:
|
274 |
-
return "π€ I couldn't find a confident answer
|
275 |
return f"**Answer:** {answer}"
|
276 |
-
|
277 |
else:
|
278 |
-
return "β οΈ Unsupported model type
|
279 |
-
|
280 |
except Exception as e:
|
281 |
-
|
|
|
282 |
|
283 |
-
|
284 |
-
|
|
|
285 |
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
return f"**Experience:** {exp[0]} years"
|
297 |
|
298 |
-
|
299 |
-
if any(k in lower_query for k in ['skill', 'technology', 'tech']):
|
300 |
-
skills_regex = r'\b(Python|Java|JavaScript|React|Node|SQL|AWS|Docker|Kubernetes|Git|HTML|CSS|Angular|Vue|Spring|Django|Flask|MongoDB|PostgreSQL)\b'
|
301 |
-
skills_found = list(set(re.findall(skills_regex, context, re.I)))
|
302 |
-
if skills_found:
|
303 |
-
return f"**Skills mentioned:** {', '.join(skills_found)}"
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
return f"**Education:** {edu[0]}"
|
310 |
|
311 |
-
|
312 |
-
sentences = re.split(r'(?<=[.!?]) +', context)
|
313 |
-
if sentences:
|
314 |
-
return f"**Answer:** {sentences[0]}"
|
315 |
|
316 |
-
|
|
|
|
|
317 |
|
318 |
-
|
319 |
-
# Gradio interface creation
|
320 |
-
def create_interface():
|
321 |
-
rag_system = SmartDocumentRAG()
|
322 |
-
|
323 |
-
with gr.Blocks(title="π§ Enhanced Document Q&A", theme=gr.themes.Soft()) as demo:
|
324 |
-
gr.Markdown("""
|
325 |
-
# π§ Enhanced Document Q&A System
|
326 |
-
|
327 |
-
**Optimized with Better Chunking, Summaries, and Reduced Hallucination**
|
328 |
-
|
329 |
-
**Features:**
|
330 |
-
- π― DistilBERT Q&A pipeline for accurate answers
|
331 |
-
- β‘ SentenceTransformer embeddings + FAISS semantic search
|
332 |
-
- π Improved document summaries & chunking
|
333 |
-
- π Direct answer fallback for facts extraction
|
334 |
-
""")
|
335 |
-
|
336 |
-
with gr.Tab("π€ Upload & Process"):
|
337 |
-
with gr.Row():
|
338 |
-
with gr.Column():
|
339 |
-
file_upload = gr.File(label="π Upload Documents", file_types=[".pdf", ".docx", ".txt"], file_count="multiple", interactive=True)
|
340 |
-
process_btn = gr.Button("π Process Documents", variant="primary")
|
341 |
-
with gr.Column():
|
342 |
-
process_status = gr.Textbox(label="π Processing Status", lines=8, interactive=False)
|
343 |
-
|
344 |
-
process_btn.click(fn=rag_system.process_documents, inputs=[file_upload], outputs=[process_status])
|
345 |
-
|
346 |
-
with gr.Tab("β Q&A"):
|
347 |
-
with gr.Row():
|
348 |
-
with gr.Column():
|
349 |
-
question_input = gr.Textbox(label="π€ Ask Your Question", placeholder="Enter your question here...", lines=3)
|
350 |
-
with gr.Row():
|
351 |
-
ask_btn = gr.Button("π§ Get Answer", variant="primary")
|
352 |
-
summary_btn = gr.Button("π Get Summary", variant="secondary")
|
353 |
-
with gr.Column():
|
354 |
-
answer_output = gr.Textbox(label="π‘ Answer", lines=8, interactive=False)
|
355 |
-
|
356 |
-
ask_btn.click(fn=rag_system.answer_question, inputs=[question_input], outputs=[answer_output])
|
357 |
-
summary_btn.click(fn=lambda: rag_system.answer_question("summary"), inputs=[], outputs=[answer_output])
|
358 |
|
359 |
return demo
|
360 |
|
361 |
-
|
362 |
if __name__ == "__main__":
|
363 |
demo = create_interface()
|
364 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import faiss
|
|
|
|
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
+
import pdfplumber
|
7 |
+
import docx
|
8 |
+
from typing import List, Optional
|
9 |
+
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
from transformers import pipeline
|
12 |
|
13 |
+
# Utility: Clean text helper
|
14 |
+
def clean_text(text: str) -> str:
|
15 |
+
text = re.sub(r'\s+', ' ', text) # collapse whitespace
|
16 |
+
text = text.strip()
|
17 |
+
return text
|
18 |
+
|
19 |
+
# Text chunking (smaller chunks for better semantic search)
|
20 |
+
def chunk_text(text: str, chunk_size: int = 300, overlap: int = 50) -> List[str]:
|
21 |
+
words = text.split()
|
22 |
+
chunks = []
|
23 |
+
start = 0
|
24 |
+
while start < len(words):
|
25 |
+
end = min(start + chunk_size, len(words))
|
26 |
+
chunk = ' '.join(words[start:end])
|
27 |
+
chunks.append(clean_text(chunk))
|
28 |
+
start += chunk_size - overlap
|
29 |
+
return chunks
|
30 |
+
|
31 |
+
# Document loader for txt, pdf, docx
|
32 |
+
def load_document(file_path: str) -> str:
|
33 |
+
ext = os.path.splitext(file_path)[1].lower()
|
34 |
+
text = ""
|
35 |
+
if ext == ".txt":
|
36 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
37 |
+
text = f.read()
|
38 |
+
elif ext == ".pdf":
|
39 |
+
with pdfplumber.open(file_path) as pdf:
|
40 |
+
pages = [page.extract_text() for page in pdf.pages if page.extract_text()]
|
41 |
+
text = "\n".join(pages)
|
42 |
+
elif ext == ".docx":
|
43 |
+
doc = docx.Document(file_path)
|
44 |
+
paragraphs = [para.text for para in doc.paragraphs if para.text.strip()]
|
45 |
+
text = "\n".join(paragraphs)
|
46 |
+
else:
|
47 |
+
raise ValueError(f"Unsupported file type: {ext}")
|
48 |
+
return clean_text(text)
|
49 |
|
50 |
class SmartDocumentRAG:
|
51 |
+
def __init__(self):
|
52 |
+
print("Loading embedder and models...")
|
53 |
+
self.embedder = SentenceTransformer('all-MiniLM-L6-v2') # small, fast
|
|
|
|
|
|
|
|
|
|
|
54 |
self.documents = []
|
55 |
+
self.embeddings = None
|
|
|
|
|
|
|
56 |
self.index = None
|
57 |
self.is_indexed = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# Load QA pipelines
|
60 |
+
self.model_type = "distilbert-qa" # change to "flan-t5" for generative
|
61 |
+
if self.model_type == "distilbert-qa":
|
62 |
+
self.qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
63 |
+
elif self.model_type == "flan-t5":
|
64 |
+
self.qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-base")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
else:
|
66 |
+
self.qa_pipeline = None
|
67 |
|
68 |
+
self.document_summary = ""
|
|
|
|
|
69 |
|
70 |
+
def process_documents(self, files: List[gr.File]) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
if not files:
|
72 |
+
return "β οΈ No files uploaded."
|
73 |
+
print(f"Processing {len(files)} files...")
|
74 |
|
75 |
+
all_text = ""
|
76 |
+
for file in files:
|
77 |
+
try:
|
78 |
+
# gr.File is a dict-like, get 'name' key for path
|
79 |
+
path = file.name if hasattr(file, 'name') else file
|
80 |
+
text = load_document(path)
|
81 |
+
all_text += text + "\n"
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Error loading {file}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
all_text = clean_text(all_text)
|
86 |
+
chunks = chunk_text(all_text)
|
87 |
|
88 |
+
if not chunks:
|
89 |
+
return "β οΈ No text extracted from documents."
|
90 |
|
91 |
+
self.documents = chunks
|
92 |
+
print(f"Created {len(chunks)} text chunks.")
|
|
|
93 |
|
94 |
+
# Embed and build FAISS index
|
95 |
+
self.embeddings = self.embedder.encode(self.documents, convert_to_numpy=True)
|
96 |
+
dimension = self.embeddings.shape[1]
|
97 |
+
self.index = faiss.IndexFlatIP(dimension) # Cosine similarity with normalized vectors
|
98 |
+
faiss.normalize_L2(self.embeddings)
|
99 |
+
self.index.add(self.embeddings)
|
100 |
+
self.is_indexed = True
|
101 |
|
102 |
+
# Generate summary (simple: first 3 chunks joined)
|
103 |
+
summary_text = " ".join(self.documents[:3])
|
104 |
+
self.document_summary = summary_text if summary_text else "Summary not available."
|
|
|
|
|
105 |
|
106 |
+
return f"β
Processed {len(files)} files and created index with {len(chunks)} chunks."
|
|
|
107 |
|
108 |
+
def find_relevant_content(self, query: str, k: int = 5) -> str:
|
|
|
|
|
|
|
109 |
if not self.is_indexed:
|
110 |
return ""
|
111 |
|
112 |
+
query_emb = self.embedder.encode([query], convert_to_numpy=True)
|
113 |
+
faiss.normalize_L2(query_emb)
|
114 |
+
k = min(k, len(self.documents))
|
115 |
+
distances, indices = self.index.search(query_emb, k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
relevant_chunks = []
|
118 |
+
for dist, idx in zip(distances[0], indices[0]):
|
119 |
+
if dist > 0.1 and idx < len(self.documents):
|
120 |
+
relevant_chunks.append(self.documents[idx])
|
121 |
+
context = " ".join(relevant_chunks)
|
122 |
+
print(f"Found {len(relevant_chunks)} relevant chunks with distances >0.1")
|
123 |
+
return context
|
124 |
|
125 |
def answer_question(self, query: str) -> str:
|
126 |
if not query.strip():
|
127 |
return "β Please ask a valid question."
|
|
|
128 |
if not self.is_indexed:
|
129 |
+
return "π Please upload and process documents first."
|
130 |
+
|
131 |
query_lower = query.lower()
|
|
|
132 |
if any(word in query_lower for word in ['summary', 'summarize', 'overview', 'about']):
|
133 |
+
return f"π Document Summary:\n\n{self.document_summary}"
|
134 |
+
|
|
|
|
|
|
|
135 |
context = self.find_relevant_content(query, k=5)
|
136 |
+
print(f"Context for query: {context[:500]}...")
|
137 |
+
|
138 |
if not context:
|
139 |
+
return "π Sorry, no relevant information found. Try rephrasing your question."
|
140 |
+
|
141 |
try:
|
142 |
+
if self.model_type == "distilbert-qa":
|
143 |
result = self.qa_pipeline(question=query, context=context)
|
144 |
+
print(f"QA pipeline result: {result}")
|
145 |
answer = result.get('answer', '').strip()
|
146 |
score = result.get('score', 0.0)
|
147 |
+
|
148 |
if not answer or score < 0.05:
|
149 |
+
return "π€ I couldn't find a confident answer based on the documents."
|
150 |
+
|
151 |
snippet = context[:300].strip()
|
152 |
if len(context) > 300:
|
153 |
snippet += "..."
|
|
|
154 |
return f"**Answer:** {answer}\n\n*Context snippet:* {snippet}"
|
155 |
+
|
156 |
elif self.model_type == "flan-t5":
|
157 |
prompt = (
|
158 |
f"Answer the question based on the context below.\n\n"
|
|
|
160 |
f"Question: {query}\nAnswer:"
|
161 |
)
|
162 |
result = self.qa_pipeline(prompt, max_length=200, num_return_sequences=1)
|
163 |
+
print(f"Generative pipeline result: {result}")
|
|
|
164 |
answer = result[0]['generated_text'].replace(prompt, '').strip()
|
165 |
if not answer:
|
166 |
+
return "π€ I couldn't find a confident answer based on the documents."
|
167 |
return f"**Answer:** {answer}"
|
168 |
+
|
169 |
else:
|
170 |
+
return "β οΈ Unsupported model type."
|
171 |
+
|
172 |
except Exception as e:
|
173 |
+
print(f"Exception in answer_question: {e}")
|
174 |
+
return f"β Error: {str(e)}"
|
175 |
|
176 |
+
# Create Gradio UI
|
177 |
+
def create_interface():
|
178 |
+
rag = SmartDocumentRAG()
|
179 |
|
180 |
+
with gr.Blocks(title="π§ Enhanced Document Q&A") as demo:
|
181 |
+
gr.Markdown(
|
182 |
+
"""
|
183 |
+
# π§ Enhanced Document Q&A System
|
184 |
+
**Features:**
|
185 |
+
- Semantic search with FAISS + SentenceTransformer
|
186 |
+
- Supports PDF, DOCX, TXT uploads
|
187 |
+
- Uses DistilBERT or Flan-T5 for Q&A
|
188 |
+
- Shows answer with context snippet
|
189 |
+
"""
|
190 |
+
)
|
191 |
|
192 |
+
with gr.Tab("Upload & Process"):
|
193 |
+
file_upload = gr.File(file_types=['.pdf', '.docx', '.txt'], label="Upload Documents", file_count="multiple")
|
194 |
+
process_btn = gr.Button("Process Documents")
|
195 |
+
process_status = gr.Textbox(label="Processing Status", interactive=False, lines=4)
|
|
|
196 |
|
197 |
+
process_btn.click(fn=rag.process_documents, inputs=[file_upload], outputs=[process_status])
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
with gr.Tab("Q&A"):
|
200 |
+
question_input = gr.Textbox(label="Ask your question", lines=2, placeholder="Type your question here...")
|
201 |
+
ask_btn = gr.Button("Get Answer")
|
202 |
+
answer_output = gr.Textbox(label="Answer", lines=8, interactive=False)
|
|
|
203 |
|
204 |
+
ask_btn.click(fn=rag.answer_question, inputs=[question_input], outputs=[answer_output])
|
|
|
|
|
|
|
205 |
|
206 |
+
with gr.Tab("Summary"):
|
207 |
+
summary_btn = gr.Button("Get Document Summary")
|
208 |
+
summary_output = gr.Textbox(label="Summary", lines=6, interactive=False)
|
209 |
|
210 |
+
summary_btn.click(fn=lambda: rag.answer_question("summary"), inputs=[], outputs=[summary_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
return demo
|
213 |
|
|
|
214 |
if __name__ == "__main__":
|
215 |
demo = create_interface()
|
216 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|