Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
import fitz
|
4 |
import faiss
|
5 |
import numpy as np
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
-
from transformers import AutoTokenizer
|
8 |
-
from
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from huggingface_hub import login
|
11 |
|
|
|
12 |
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
13 |
if not hf_token:
|
14 |
raise ValueError("Hugging Face token not found.")
|
@@ -17,28 +18,21 @@ login(token=hf_token)
|
|
17 |
# Load embedding model
|
18 |
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
|
19 |
|
20 |
-
# Load quantized Mistral
|
21 |
-
model_id = "
|
22 |
-
|
23 |
-
|
24 |
-
llm_int8_threshold=6.0,
|
25 |
-
llm_int8_skip_modules=None,
|
26 |
-
)
|
27 |
-
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
|
29 |
-
model = AutoModelForCausalLM.from_pretrained(
|
30 |
model_id,
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
)
|
35 |
-
llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
36 |
|
37 |
-
#
|
38 |
index = None
|
39 |
doc_texts = []
|
40 |
|
41 |
-
#
|
42 |
def extract_text(file):
|
43 |
try:
|
44 |
text = ""
|
@@ -56,7 +50,7 @@ def extract_text(file):
|
|
56 |
except Exception as e:
|
57 |
return f"β Error extracting text: {e}"
|
58 |
|
59 |
-
#
|
60 |
def process_file(file):
|
61 |
global index, doc_texts
|
62 |
try:
|
@@ -64,25 +58,23 @@ def process_file(file):
|
|
64 |
if text.startswith("β"):
|
65 |
return text
|
66 |
|
67 |
-
#
|
68 |
-
text = text[:15000]
|
69 |
-
|
70 |
splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
|
71 |
doc_texts = splitter.split_text(text)
|
72 |
|
73 |
if not doc_texts:
|
74 |
-
return "β
|
75 |
|
76 |
embeddings = embed_model.encode(doc_texts, convert_to_numpy=True)
|
77 |
dim = embeddings.shape[1]
|
78 |
index = faiss.IndexFlatL2(dim)
|
79 |
index.add(embeddings)
|
80 |
|
81 |
-
return "β
Document processed.
|
82 |
except Exception as e:
|
83 |
return f"β Error processing file: {e}"
|
84 |
|
85 |
-
#
|
86 |
def generate_answer(question):
|
87 |
global index, doc_texts
|
88 |
try:
|
@@ -94,31 +86,40 @@ def generate_answer(question):
|
|
94 |
context = "\n".join([doc_texts[i] for i in I[0]])
|
95 |
|
96 |
prompt = (
|
97 |
-
f"You are a helpful assistant. Use the context below to answer
|
98 |
f"Context:\n{context}\n\n"
|
99 |
f"Question: {question}\n\n"
|
100 |
f"Answer:"
|
101 |
)
|
102 |
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
except Exception as e:
|
106 |
return f"β Error generating answer: {e}"
|
107 |
|
108 |
# Gradio UI
|
109 |
-
with gr.Blocks(title="π Document Q&A
|
110 |
-
gr.Markdown("<h1 style='text-align: center;'>π Document
|
111 |
-
gr.Markdown("Upload a PDF or TXT
|
112 |
|
113 |
with gr.Row():
|
114 |
-
file_input = gr.File(label="Upload
|
115 |
upload_output = gr.Textbox(label="Upload Status")
|
116 |
|
117 |
with gr.Row():
|
118 |
-
question_input = gr.Textbox(label="Ask a Question", placeholder="e.g. What is
|
119 |
answer_output = gr.Textbox(label="Answer")
|
120 |
|
121 |
file_input.change(fn=process_file, inputs=file_input, outputs=upload_output)
|
122 |
question_input.submit(fn=generate_answer, inputs=question_input, outputs=answer_output)
|
123 |
|
124 |
-
demo.launch(show_error=True
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
import fitz # PyMuPDF
|
4 |
import faiss
|
5 |
import numpy as np
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
from auto_gptq import AutoGPTQForCausalLM
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from huggingface_hub import login
|
11 |
|
12 |
+
# Authenticate
|
13 |
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
14 |
if not hf_token:
|
15 |
raise ValueError("Hugging Face token not found.")
|
|
|
18 |
# Load embedding model
|
19 |
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
|
20 |
|
21 |
+
# Load 4-bit quantized Mistral model
|
22 |
+
model_id = "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ"
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
24 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
model_id,
|
26 |
+
use_safetensors=True,
|
27 |
+
trust_remote_code=True,
|
28 |
+
device_map="auto"
|
29 |
)
|
|
|
30 |
|
31 |
+
# Internal state
|
32 |
index = None
|
33 |
doc_texts = []
|
34 |
|
35 |
+
# PDF/TXT text extraction
|
36 |
def extract_text(file):
|
37 |
try:
|
38 |
text = ""
|
|
|
50 |
except Exception as e:
|
51 |
return f"β Error extracting text: {e}"
|
52 |
|
53 |
+
# Preprocess and embed
|
54 |
def process_file(file):
|
55 |
global index, doc_texts
|
56 |
try:
|
|
|
58 |
if text.startswith("β"):
|
59 |
return text
|
60 |
|
61 |
+
text = text[:15000] # Limit size
|
|
|
|
|
62 |
splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
|
63 |
doc_texts = splitter.split_text(text)
|
64 |
|
65 |
if not doc_texts:
|
66 |
+
return "β Document could not be split."
|
67 |
|
68 |
embeddings = embed_model.encode(doc_texts, convert_to_numpy=True)
|
69 |
dim = embeddings.shape[1]
|
70 |
index = faiss.IndexFlatL2(dim)
|
71 |
index.add(embeddings)
|
72 |
|
73 |
+
return "β
Document processed. Ask your question below."
|
74 |
except Exception as e:
|
75 |
return f"β Error processing file: {e}"
|
76 |
|
77 |
+
# Generate answer using context
|
78 |
def generate_answer(question):
|
79 |
global index, doc_texts
|
80 |
try:
|
|
|
86 |
context = "\n".join([doc_texts[i] for i in I[0]])
|
87 |
|
88 |
prompt = (
|
89 |
+
f"You are a helpful assistant. Use the context below to answer clearly.\n\n"
|
90 |
f"Context:\n{context}\n\n"
|
91 |
f"Question: {question}\n\n"
|
92 |
f"Answer:"
|
93 |
)
|
94 |
|
95 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
96 |
+
output = model.generate(
|
97 |
+
**inputs,
|
98 |
+
max_new_tokens=150,
|
99 |
+
do_sample=True,
|
100 |
+
temperature=0.7,
|
101 |
+
top_k=50,
|
102 |
+
top_p=0.95
|
103 |
+
)
|
104 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
105 |
+
return answer.split("Answer:")[-1].strip()
|
106 |
except Exception as e:
|
107 |
return f"β Error generating answer: {e}"
|
108 |
|
109 |
# Gradio UI
|
110 |
+
with gr.Blocks(title="π Document Q&A (Mistral 4-bit)") as demo:
|
111 |
+
gr.Markdown("<h1 style='text-align: center;'>π Document Q&A with Mistral 4-bit</h1>")
|
112 |
+
gr.Markdown("Upload a PDF or TXT and ask questions. Powered by Mistral-7B GPTQ.")
|
113 |
|
114 |
with gr.Row():
|
115 |
+
file_input = gr.File(label="Upload Document", file_types=[".pdf", ".txt"])
|
116 |
upload_output = gr.Textbox(label="Upload Status")
|
117 |
|
118 |
with gr.Row():
|
119 |
+
question_input = gr.Textbox(label="Ask a Question", placeholder="e.g. What is this document about?")
|
120 |
answer_output = gr.Textbox(label="Answer")
|
121 |
|
122 |
file_input.change(fn=process_file, inputs=file_input, outputs=upload_output)
|
123 |
question_input.submit(fn=generate_answer, inputs=question_input, outputs=answer_output)
|
124 |
|
125 |
+
demo.launch(show_error=True)
|