Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,125 +1,71 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
-
import fitz # PyMuPDF
|
4 |
import faiss
|
5 |
-
import
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from huggingface_hub import login
|
11 |
|
12 |
-
# Authenticate
|
13 |
-
hf_token = os.
|
14 |
if not hf_token:
|
15 |
-
raise ValueError("
|
16 |
login(token=hf_token)
|
17 |
|
18 |
-
# Load
|
19 |
-
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
|
20 |
-
|
21 |
-
# Load 4-bit quantized Mistral model
|
22 |
model_id = "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ"
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id,
|
24 |
-
model =
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
if text.startswith("β"):
|
59 |
-
return text
|
60 |
-
|
61 |
-
text = text[:15000] # Limit size
|
62 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
|
63 |
-
doc_texts = splitter.split_text(text)
|
64 |
-
|
65 |
-
if not doc_texts:
|
66 |
-
return "β Document could not be split."
|
67 |
-
|
68 |
-
embeddings = embed_model.encode(doc_texts, convert_to_numpy=True)
|
69 |
-
dim = embeddings.shape[1]
|
70 |
-
index = faiss.IndexFlatL2(dim)
|
71 |
-
index.add(embeddings)
|
72 |
-
|
73 |
-
return "β
Document processed. Ask your question below."
|
74 |
-
except Exception as e:
|
75 |
-
return f"β Error processing file: {e}"
|
76 |
-
|
77 |
-
# Generate answer using context
|
78 |
-
def generate_answer(question):
|
79 |
-
global index, doc_texts
|
80 |
-
try:
|
81 |
-
if index is None or not doc_texts:
|
82 |
-
return "β οΈ Please upload and process a document first."
|
83 |
-
|
84 |
-
question_emb = embed_model.encode([question], convert_to_numpy=True)
|
85 |
-
_, I = index.search(question_emb, k=3)
|
86 |
-
context = "\n".join([doc_texts[i] for i in I[0]])
|
87 |
-
|
88 |
-
prompt = (
|
89 |
-
f"You are a helpful assistant. Use the context below to answer clearly.\n\n"
|
90 |
-
f"Context:\n{context}\n\n"
|
91 |
-
f"Question: {question}\n\n"
|
92 |
-
f"Answer:"
|
93 |
-
)
|
94 |
-
|
95 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
96 |
-
output = model.generate(
|
97 |
-
**inputs,
|
98 |
-
max_new_tokens=150,
|
99 |
-
do_sample=True,
|
100 |
-
temperature=0.7,
|
101 |
-
top_k=50,
|
102 |
-
top_p=0.95
|
103 |
-
)
|
104 |
-
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
105 |
-
return answer.split("Answer:")[-1].strip()
|
106 |
-
except Exception as e:
|
107 |
-
return f"β Error generating answer: {e}"
|
108 |
-
|
109 |
-
# Gradio UI
|
110 |
-
with gr.Blocks(title="π Document Q&A (Mistral 4-bit)") as demo:
|
111 |
-
gr.Markdown("<h1 style='text-align: center;'>π Document Q&A with Mistral 4-bit</h1>")
|
112 |
-
gr.Markdown("Upload a PDF or TXT and ask questions. Powered by Mistral-7B GPTQ.")
|
113 |
|
114 |
with gr.Row():
|
115 |
-
|
116 |
-
|
|
|
|
|
117 |
|
118 |
with gr.Row():
|
119 |
-
|
120 |
-
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
|
125 |
-
demo.launch(
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
import gradio as gr
|
|
|
4 |
import faiss
|
5 |
+
from transformers import AutoTokenizer, pipeline
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain_community.document_loaders import PyPDFLoader
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from huggingface_hub import login
|
11 |
|
12 |
+
# π Authenticate with Hugging Face using token stored in Secrets
|
13 |
+
hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
14 |
if not hf_token:
|
15 |
+
raise ValueError("β HUGGINGFACE_TOKEN not set in environment variables.")
|
16 |
login(token=hf_token)
|
17 |
|
18 |
+
# π Load model and tokenizer
|
|
|
|
|
|
|
19 |
model_id = "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ"
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=True)
|
21 |
+
pipe = pipeline("text-generation", model=model_id, tokenizer=tokenizer,
|
22 |
+
torch_dtype=torch.float16, device_map="auto", use_auth_token=True)
|
23 |
+
|
24 |
+
# π Sentence transformer for embeddings
|
25 |
+
embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
26 |
+
|
27 |
+
# Global store for vector DB
|
28 |
+
db = None
|
29 |
+
|
30 |
+
def process_pdf(pdf_path):
|
31 |
+
"""Load, chunk, embed and index PDF into FAISS."""
|
32 |
+
loader = PyPDFLoader(pdf_path)
|
33 |
+
pages = loader.load()
|
34 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
35 |
+
docs = text_splitter.split_documents(pages)
|
36 |
+
|
37 |
+
global db
|
38 |
+
db = FAISS.from_documents(docs, embed_model)
|
39 |
+
return "β
PDF processed successfully. Ask your questions now."
|
40 |
+
|
41 |
+
def query_answer(question):
|
42 |
+
if not db:
|
43 |
+
return "β οΈ Please upload and process a PDF first."
|
44 |
+
|
45 |
+
docs = db.similarity_search(question, k=3)
|
46 |
+
context = "\n".join([doc.page_content for doc in docs])
|
47 |
+
prompt = f"[INST] You are a helpful assistant. Use the context below to answer the question:\n\nContext:\n{context}\n\nQuestion: {question}\n\nAnswer: [/INST]"
|
48 |
+
|
49 |
+
result = pipe(prompt, max_new_tokens=256, do_sample=True, top_k=5)[0]["generated_text"]
|
50 |
+
return result.replace(prompt, "").strip()
|
51 |
+
|
52 |
+
# π§ Gradio UI
|
53 |
+
with gr.Blocks() as demo:
|
54 |
+
gr.Markdown("# π Document Q&A using Mistral-GPTQ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
with gr.Row():
|
57 |
+
pdf_file = gr.File(label="Upload PDF", type="filepath")
|
58 |
+
upload_btn = gr.Button("Process PDF")
|
59 |
+
|
60 |
+
status = gr.Textbox(label="Status", interactive=False)
|
61 |
|
62 |
with gr.Row():
|
63 |
+
user_question = gr.Textbox(label="Ask a Question")
|
64 |
+
ask_btn = gr.Button("Get Answer")
|
65 |
+
|
66 |
+
answer = gr.Textbox(label="Answer", lines=10)
|
67 |
|
68 |
+
upload_btn.click(process_pdf, inputs=pdf_file, outputs=status)
|
69 |
+
ask_btn.click(query_answer, inputs=user_question, outputs=answer)
|
70 |
|
71 |
+
demo.launch()
|