Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import faiss
|
|
5 |
import numpy as np
|
6 |
from io import BytesIO
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
-
from transformers import AutoTokenizer,
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from huggingface_hub import login
|
11 |
|
@@ -18,42 +18,35 @@ login(token=hf_token)
|
|
18 |
# Load embedding model
|
19 |
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
|
20 |
|
21 |
-
# Load
|
22 |
-
model_id = "
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id
|
24 |
-
model =
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
token=hf_token
|
29 |
-
)
|
30 |
-
llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
31 |
-
|
32 |
-
# Global state
|
33 |
index = None
|
34 |
doc_texts = []
|
35 |
|
36 |
-
# Extract text from
|
37 |
-
def extract_text(
|
38 |
text = ""
|
39 |
-
|
40 |
-
if
|
41 |
-
|
42 |
-
pdf_stream = BytesIO(f.read())
|
43 |
doc = fitz.open(stream=pdf_stream, filetype="pdf")
|
44 |
for page in doc:
|
45 |
text += page.get_text()
|
46 |
-
elif
|
47 |
-
|
48 |
-
text = f.read()
|
49 |
else:
|
50 |
return "β Unsupported file type."
|
51 |
return text
|
52 |
|
53 |
-
# Process file
|
54 |
-
def process_file(
|
55 |
global index, doc_texts
|
56 |
-
text = extract_text(
|
57 |
if text.startswith("β"):
|
58 |
return text
|
59 |
|
@@ -65,9 +58,9 @@ def process_file(file_obj):
|
|
65 |
index = faiss.IndexFlatL2(dim)
|
66 |
index.add(embeddings)
|
67 |
|
68 |
-
return "β
File processed
|
69 |
|
70 |
-
# Generate answer
|
71 |
def generate_answer(question):
|
72 |
global index, doc_texts
|
73 |
if index is None or not doc_texts:
|
@@ -77,30 +70,30 @@ def generate_answer(question):
|
|
77 |
_, I = index.search(question_emb, k=3)
|
78 |
context = "\n".join([doc_texts[i] for i in I[0]])
|
79 |
|
80 |
-
prompt = f"""
|
81 |
|
82 |
Context:
|
83 |
{context}
|
84 |
|
85 |
Question: {question}
|
86 |
-
|
87 |
|
88 |
-
response = llm(prompt, max_new_tokens=300
|
89 |
-
return response[0]["generated_text"].
|
90 |
|
91 |
# Gradio UI
|
92 |
-
with gr.Blocks(title="RAG Chatbot
|
93 |
-
gr.Markdown("##
|
94 |
|
95 |
with gr.Row():
|
96 |
-
file_input = gr.File(label="π Upload
|
97 |
-
upload_status = gr.Textbox(label="
|
98 |
|
99 |
with gr.Row():
|
100 |
-
|
101 |
-
|
102 |
|
103 |
file_input.change(fn=process_file, inputs=file_input, outputs=upload_status)
|
104 |
-
|
105 |
|
106 |
demo.launch()
|
|
|
5 |
import numpy as np
|
6 |
from io import BytesIO
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from huggingface_hub import login
|
11 |
|
|
|
18 |
# Load embedding model
|
19 |
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
|
20 |
|
21 |
+
# β
Load FLAN-T5 base (CPU-friendly)
|
22 |
+
model_id = "google/flan-t5-base"
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
24 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
25 |
+
llm = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
26 |
+
|
27 |
+
# Globals
|
|
|
|
|
|
|
|
|
|
|
28 |
index = None
|
29 |
doc_texts = []
|
30 |
|
31 |
+
# Extract text from PDF or TXT
|
32 |
+
def extract_text(file):
|
33 |
text = ""
|
34 |
+
file_bytes = file.read()
|
35 |
+
if file.name.endswith(".pdf"):
|
36 |
+
pdf_stream = BytesIO(file_bytes)
|
|
|
37 |
doc = fitz.open(stream=pdf_stream, filetype="pdf")
|
38 |
for page in doc:
|
39 |
text += page.get_text()
|
40 |
+
elif file.name.endswith(".txt"):
|
41 |
+
text = file_bytes.decode("utf-8")
|
|
|
42 |
else:
|
43 |
return "β Unsupported file type."
|
44 |
return text
|
45 |
|
46 |
+
# Process the file, build FAISS index
|
47 |
+
def process_file(file):
|
48 |
global index, doc_texts
|
49 |
+
text = extract_text(file)
|
50 |
if text.startswith("β"):
|
51 |
return text
|
52 |
|
|
|
58 |
index = faiss.IndexFlatL2(dim)
|
59 |
index.add(embeddings)
|
60 |
|
61 |
+
return "β
File processed! You can now ask questions."
|
62 |
|
63 |
+
# Generate answer using context + LLM
|
64 |
def generate_answer(question):
|
65 |
global index, doc_texts
|
66 |
if index is None or not doc_texts:
|
|
|
70 |
_, I = index.search(question_emb, k=3)
|
71 |
context = "\n".join([doc_texts[i] for i in I[0]])
|
72 |
|
73 |
+
prompt = f"""Use the following context to answer the question.
|
74 |
|
75 |
Context:
|
76 |
{context}
|
77 |
|
78 |
Question: {question}
|
79 |
+
"""
|
80 |
|
81 |
+
response = llm(prompt, max_new_tokens=300)
|
82 |
+
return response[0]["generated_text"].strip()
|
83 |
|
84 |
# Gradio UI
|
85 |
+
with gr.Blocks(title="RAG Chatbot (Fast & CPU Compatible)") as demo:
|
86 |
+
gr.Markdown("## π Upload PDF/TXT and Ask Questions using FLAN-T5")
|
87 |
|
88 |
with gr.Row():
|
89 |
+
file_input = gr.File(label="π Upload File (.pdf or .txt)", file_types=[".pdf", ".txt"])
|
90 |
+
upload_status = gr.Textbox(label="Upload Status", interactive=False)
|
91 |
|
92 |
with gr.Row():
|
93 |
+
question_box = gr.Textbox(label="β Ask a Question", placeholder="What would you like to know?")
|
94 |
+
answer_box = gr.Textbox(label="π¬ Answer", interactive=False)
|
95 |
|
96 |
file_input.change(fn=process_file, inputs=file_input, outputs=upload_status)
|
97 |
+
question_box.submit(fn=generate_answer, inputs=question_box, outputs=answer_box)
|
98 |
|
99 |
demo.launch()
|