# import gradio as gr # import os # def greet(name): # return "Hello " + name + "!" # # Create the simplest possible Gradio interface # iface = gr.Interface( # fn=greet, # inputs="text", # outputs="text", # title="Test Gradio App", # description="This is a simple test app to check if Gradio launches.", # flagging_dir="/tmp/gradio_flagged_data" # <--- ADD THIS LINE BACK! # ) # # Use a specific port for Gradio within the Docker container. # # This matches the EXPOSE 7860 in your Dockerfile. # # It also sets share=False for deployment contexts like Spaces. # iface.launch(server_name="0.0.0.0", server_port=7860, share=False) import gradio as gr # from transformers import pipeline # from langchain_community.llms import OpenAI # from langchain.chains import LLMChain # from langchain.prompts import PromptTemplate # from langchain_community.document_loaders import PyPDFLoader def load_document(file_path): """Loads a PDF document and returns its content.""" loader = PyPDFLoader(file_path) pages = loader.load_and_split() return "".join([page.page_content for page in pages]) def summarize_text(text): """Summarizes the given text using a pre-trained model.""" summarizer = pipeline("summarization", model="facebook/bart-large-cnn") summary = summarizer(text, max_length=500, min_length=100, do_sample=False) return summary[0]['summary_text'] def identify_future_research(text): """Uses a language model to identify future research scope.""" llm = OpenAI(temperature=0.7) # You can also use open-source models from Hugging Face Hub prompt_template = """ Based on the following research paper, identify and suggest potential areas for future research. Be specific and provide actionable insights. Research Paper Content: {paper_content} Future Research Scope: """ prompt = PromptTemplate( input_variables=["paper_content"], template=prompt_template ) chain = LLMChain(llm=llm, prompt=prompt) future_scope = chain.run(paper_content=text) return future_scope def analyze_paper(file): """The main function that orchestrates the analysis.""" if file is not None: # paper_text = load_document(file.name) # summary = summarize_text(paper_text) # future_scope = identify_future_research(paper_text) # return summary, future_scope return "Dummy Summary Placeholder", "Dummy Future Scope Placeholder" return "Please upload a research paper.", "" iface = gr.Interface( fn=analyze_paper, inputs=gr.File(label="Upload Research Paper (PDF)"), outputs=[ gr.Textbox(label="Summary of the Paper"), gr.Textbox(label="Scope for Further Research") ], flagging_dir="/tmp/gradio_flagged_data", title="AI Research Assistant", description="Upload a research paper to get a summary and identify potential areas for future research.", theme="huggingface" ) iface.launch(share=True, debug=True)