Spaces:
Sleeping
Sleeping
File size: 18,036 Bytes
7741de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
from flask import Flask, render_template, request
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import io
import base64
import pandas as pd
import google.generativeai as genai
import os
from docx import Document
import plotly.express as px
import plotly.io as pio
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
# Configure Gemini API
GOOGLE_API_KEY = 'AIzaSyBLcWuSj6N1bkhQsTF4kt3_hFh4ibH11pQ' # Replace with your actual API key
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel('gemini-2.0-flash')
def ensure_upload_folder():
if not os.path.exists(app.config['UPLOAD_FOLDER']):
os.makedirs(app.config['UPLOAD_FOLDER'])
def extract_text_from_docx(file_path):
doc = Document(file_path)
full_text = []
for paragraph in doc.paragraphs:
full_text.append(paragraph.text)
return '\n'.join(full_text)
def extract_data_using_gemini(text):
prompt = """
Extract the event counts from the following table format in the text:
2022-2023
Cultural competitions/events: NUMBER
Sports competitions/events: NUMBER
Technical fest/Academic fest: NUMBER
Social activities/events: NUMBER
Any other events through Active clubs and forums: NUMBER
2021-2022
Cultural competitions/events: NUMBER
Sports competitions/events: NUMBER
Technical fest/Academic fest: NUMBER
Social activities/events: NUMBER
Any other events through Active clubs and forums: NUMBER
2020-2021
Cultural competitions/events: NUMBER
Sports competitions/events: NUMBER
Technical fest/Academic fest: NUMBER
Social activities/events: NUMBER
Any other events through Active clubs and forums: NUMBER
2019-2020
Cultural competitions/events: NUMBER
Sports competitions/events: NUMBER
Technical fest/Academic fest: NUMBER
Social activities/events: NUMBER
Any other events through Active clubs and forums: NUMBER
2018-2019
Cultural competitions/events: NUMBER
Sports competitions/events: NUMBER
Technical fest/Academic fest: NUMBER
Social activities/events: NUMBER
Any other events through Active clubs and forums: NUMBER
Look for these exact numbers in the text. The data appears in a table with years and categories.
For each year, find:
- Number of Cultural competitions/events
- Number of Sports competitions/events
- Number of Technical fest/Academic fest events
- Number of Social activities/events
- Number of "Any other events through Active clubs and forums"
Return the data in this exact Python dictionary format:
{
'2022-2023': {'Cultural': 11, 'Sports': 10, 'Technical': 29, 'Social': 15, 'Other': 20},
'2021-2022': {'Cultural': 7, 'Sports': 8, 'Technical': 13, 'Social': 12, 'Other': 15},
'2020-2021': {'Cultural': 7, 'Sports': 9, 'Technical': 15, 'Social': 10, 'Other': 17},
'2019-2020': {'Cultural': 12, 'Sports': 17, 'Technical': 21, 'Social': 14, 'Other': 11},
'2018-2019': {'Cultural': 8, 'Sports': 17, 'Technical': 15, 'Social': 11, 'Other': 9}
}
Important:
- Use the EXACT numbers from the document
- Include ALL years from 2018-2019 to 2022-2023
- Make sure to find the correct table in the document that has these numbers
- Return only the Python dictionary, no other text
"""
try:
# Print the first part of the text for debugging
print("\nSearching in text:")
print("=" * 50)
# Look for specific patterns in text
import re
years = re.findall(r'(20\d{2}-20\d{2})', text)
print(f"Found years: {years}")
# Look for numbers near key terms
cultural = re.findall(r'Cultural competitions/events\s*(\d+)', text)
sports = re.findall(r'Sports competitions/events\s*(\d+)', text)
technical = re.findall(r'Technical fest/Academic fest\s*(\d+)', text)
other = re.findall(r'Any other events.*?(\d+)', text)
social = re.findall(r'Social activities/events\s*(\d+)', text)
print(f"Found cultural numbers: {cultural}")
print(f"Found sports numbers: {sports}")
print(f"Found technical numbers: {technical}")
print(f"Found other numbers: {other}")
print(f"Found social numbers: {social}")
print("=" * 50)
response = model.generate_content(text + "\n" + prompt)
response_text = response.text.strip()
# Debug print
print("Raw response:", response_text)
# Remove any markdown formatting
if '' in response_text:
response_text = response_text.split('')[1]
if 'python' in response_text.split('\n')[0]:
response_text = '\n'.join(response_text.split('\n')[1:])
# Clean the response text
response_text = response_text.strip()
print("Cleaned response:", response_text)
# Parse the response
try:
import ast
data = ast.literal_eval(response_text)
except:
# Fallback to JSON parsing if ast fails
response_text = response_text.replace("'", '"')
import json
data = json.loads(response_text)
# Validate data structure
if not isinstance(data, dict):
raise ValueError("Response is not a dictionary")
# Ensure all years are present
expected_years = ['2022-2023', '2021-2022', '2020-2021', '2019-2020', '2018-2019']
if not all(year in data for year in expected_years):
raise ValueError("Missing some years in the data")
# Ensure all categories are present for each year
required_categories = {'Cultural', 'Sports', 'Technical', 'Social', 'Other'}
for year in data:
if not all(cat in data[year] for cat in required_categories):
raise ValueError(f"Missing categories in year {year}")
return data
except Exception as e:
print(f"Error processing with Gemini: {str(e)}")
print(f"Response text was: {response_text if 'response_text' in locals() else 'No response text'}")
return None
def get_graph_insights(data, plot_type):
"""Generate detailed insights including SWOT analysis for different types of plots."""
df = pd.DataFrame(data).T
if plot_type == 'bar':
total_by_category = df.sum()
max_category = total_by_category.idxmax()
min_category = total_by_category.idxmin()
avg_events = total_by_category.mean()
insights = {
'main_insight': f"The most frequent event category overall is {max_category} with {int(total_by_category[max_category])} events, while {min_category} has the least with {int(total_by_category[min_category])} events.",
'swot': {
'strengths': [
f"Strong performance in {max_category} events",
f"Diverse range of events across categories",
f"Average of {avg_events:.1f} events per category"
],
'weaknesses': [
f"Low participation in {min_category} events",
f"Uneven distribution across categories",
"Potential resource allocation issues"
],
'opportunities': [
f"Room for growth in {min_category} category",
"Potential for cross-category events",
"Scope for balanced development"
],
'threats': [
"Risk of over-dependence on dominant category",
"Resource strain in peak periods",
"Sustainability challenges"
]
},
'recommendations': [
f"Consider boosting {min_category} events",
"Implement balanced resource allocation",
"Develop cross-category initiatives"
]
}
return insights
elif plot_type == 'pie':
latest_year = '2022-2023'
year_data = data[latest_year]
total = sum(year_data.values())
max_cat = max(year_data.items(), key=lambda x: x[1])
min_cat = min(year_data.items(), key=lambda x: x[1])
percentage = (max_cat[1] / total) * 100
insights = {
'main_insight': f"In {latest_year}, {max_cat[0]} events dominated with {max_cat[1]} events ({percentage:.1f}% of total events).",
'swot': {
'strengths': [
f"Strong presence in {max_cat[0]} category",
"Clear category leadership",
"Established event structure"
],
'weaknesses': [
f"Under-representation in {min_cat[0]} category",
"Imbalanced distribution",
"Resource concentration risks"
],
'opportunities': [
"Potential for category diversification",
"Growth in underserved categories",
"New event type development"
],
'threats': [
"Category saturation risk",
"Resource allocation challenges",
"Sustainability concerns"
]
},
'recommendations': [
"Diversify event portfolio",
f"Strengthen {min_cat[0]} category",
"Implement balanced growth strategy"
]
}
return insights
elif plot_type == 'line':
trend = "increasing" if df.iloc[-1].mean() > df.iloc[0].mean() else "decreasing"
growth_rate = ((df.iloc[-1].mean() - df.iloc[0].mean()) / df.iloc[0].mean() * 100)
insights = {
'main_insight': f"The overall trend shows a {trend} pattern with a {growth_rate:.1f}% change in event frequency over the years.",
'swot': {
'strengths': [
f"Consistent {trend} trend",
"Clear growth trajectory",
"Established pattern"
],
'weaknesses': [
"Fluctuations in growth rate",
"Periodic inconsistencies",
"Resource scaling challenges"
],
'opportunities': [
"Growth optimization potential",
"Pattern regularization",
"Strategic planning possibilities"
],
'threats': [
"Sustainability of growth rate",
"Resource management challenges",
"Market saturation risks"
]
},
'recommendations': [
"Develop sustainable growth plan",
"Implement resource scaling strategy",
"Monitor growth patterns"
]
}
return insights
elif plot_type == 'growth':
growth_rates = df.pct_change() * 100
avg_growth = growth_rates.mean().mean()
max_growth = growth_rates.max().max()
min_growth = growth_rates.min().min()
insights = {
'main_insight': f"The average year-over-year growth rate is {avg_growth:.1f}%, with peaks of {max_growth:.1f}% and lows of {min_growth:.1f}%.",
'swot': {
'strengths': [
"Positive average growth rate",
"Strong peak performance periods",
"Growth momentum"
],
'weaknesses': [
"Growth rate volatility",
"Negative growth periods",
"Inconsistent patterns"
],
'opportunities': [
"Growth stabilization potential",
"Performance optimization",
"Strategic growth planning"
],
'threats': [
"Growth sustainability",
"Resource scaling challenges",
"Market fluctuations"
]
},
'recommendations': [
"Stabilize growth patterns",
"Develop contingency plans",
"Implement growth monitoring"
]
}
return insights
elif plot_type == 'area':
total_growth = ((df.iloc[-1].sum() - df.iloc[0].sum()) / df.iloc[0].sum() * 100)
avg_yearly_growth = total_growth / (len(df) - 1)
insights = {
'main_insight': f"The cumulative events show a {total_growth:.1f}% total change, averaging {avg_yearly_growth:.1f}% yearly growth.",
'swot': {
'strengths': [
"Consistent cumulative growth",
"Strong overall trajectory",
"Clear progress pattern"
],
'weaknesses': [
"Growth rate variations",
"Resource scaling challenges",
"Potential sustainability issues"
],
'opportunities': [
"Long-term growth potential",
"Pattern optimization",
"Strategic expansion"
],
'threats': [
"Scaling challenges",
"Resource constraints",
"Market saturation"
]
},
'recommendations': [
"Develop long-term growth strategy",
"Implement resource planning",
"Monitor cumulative trends"
]
}
return insights
return {
'main_insight': "No specific insights available for this visualization.",
'swot': {
'strengths': [],
'weaknesses': [],
'opportunities': [],
'threats': []
},
'recommendations': []
}
def create_plots(data):
plots = {}
df = pd.DataFrame(data).T
# Bar Chart
fig1 = px.bar(df, barmode='group', title='Events Distribution Across Years')
plots['bar'] = {
'plot': pio.to_html(fig1, full_html=False),
'insight': get_graph_insights(data, 'bar')
}
# Pie Chart
latest_year = '2022-2023'
fig2 = px.pie(names=data[latest_year].keys(), values=data[latest_year].values(),
title=f'Event Distribution for {latest_year}')
plots['pie'] = {
'plot': pio.to_html(fig2, full_html=False),
'insight': get_graph_insights(data, 'pie')
}
# Line Chart
fig3 = px.line(df, markers=True, title='Event Trends Over Years')
plots['line'] = {
'plot': pio.to_html(fig3, full_html=False),
'insight': get_graph_insights(data, 'line')
}
# Growth Rate Chart
growth_rates = df.pct_change() * 100
fig4 = px.bar(growth_rates, title='Year-over-Year Growth Rate by Category')
plots['growth'] = {
'plot': pio.to_html(fig4, full_html=False),
'insight': get_graph_insights(data, 'growth')
}
# Area Chart
fig5 = px.area(df, title='Cumulative Events Distribution')
plots['area'] = {
'plot': pio.to_html(fig5, full_html=False),
'insight': get_graph_insights(data, 'area')
}
# Statistical Analysis
stats = {
'total_events': df.sum().sum(),
'avg_events_per_year': df.sum(axis=1).mean().round(2),
'most_active_year': df.sum(axis=1).idxmax(),
'most_common_category': df.sum().idxmax(),
'growth_analysis': {
'total_growth': ((df.iloc[-1].sum() - df.iloc[0].sum()) / df.iloc[0].sum() * 100).round(2),
'category_growth': ((df.iloc[-1] - df.iloc[0]) / df.iloc[0] * 100).round(2).to_dict()
}
}
plots['stats'] = stats
return plots
@app.route('/', methods=['GET', 'POST'])
def index():
plots = None
error_message = None
if request.method == 'POST':
if 'document' not in request.files:
error_message = 'No file uploaded'
return render_template('index.html', error=error_message)
file = request.files['document']
if file.filename == '':
error_message = 'No file selected'
return render_template('index.html', error=error_message)
if file and file.filename.endswith('.docx'):
ensure_upload_folder()
file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
file.save(file_path)
try:
text = extract_text_from_docx(file_path)
data = extract_data_using_gemini(text)
print("Extracted data:", data)
if data:
plots = create_plots(data)
else:
error_message = 'Could not extract data from document. Please check the document format.'
os.remove(file_path)
except Exception as e:
error_message = f'Error processing document: {str(e)}'
print(f"Full error: {str(e)}")
else:
error_message = 'Please upload a .docx file'
return render_template('index.html', plots=plots, error=error_message)
if __name__ == '__main__':
app.run(debug=True, port=5001) |