File size: 17,944 Bytes
3cc6b13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
from flask import Flask, render_template, request, flash, redirect, url_for
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pandas as pd
import google.generativeai as genai
import os
import logging
from docx import Document
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as pio
from werkzeug.utils import secure_filename
import re
import ast
import json
from datetime import datetime
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
app.secret_key = 'your-secret-key-here' # Change this to a random secret key
app.config['UPLOAD_FOLDER'] = 'uploads'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
# Configure Gemini API - Replace with your actual API key
GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY', 'AIzaSyBLcWuSj6N1bkhQsTF4kt3_hFh4ibH11pQ')
if GOOGLE_API_KEY and GOOGLE_API_KEY != 'your-api-key-here':
try:
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel('gemini-2.0-flash-exp')
logger.info("Gemini API configured successfully")
except Exception as e:
logger.error(f"Failed to configure Gemini API: {e}")
model = None
else:
logger.warning("Gemini API key not configured")
model = None
def ensure_upload_folder():
"""Create upload folder if it doesn't exist."""
try:
if not os.path.exists(app.config['UPLOAD_FOLDER']):
os.makedirs(app.config['UPLOAD_FOLDER'])
logger.info(f"Created upload folder: {app.config['UPLOAD_FOLDER']}")
except Exception as e:
logger.error(f"Failed to create upload folder: {e}")
raise
def extract_text_from_docx(file_path):
"""Extract text from a DOCX file."""
try:
doc = Document(file_path)
full_text = []
for paragraph in doc.paragraphs:
if paragraph.text.strip(): # Only add non-empty paragraphs
full_text.append(paragraph.text)
# Also extract text from tables
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
if cell.text.strip():
full_text.append(cell.text)
text = '\n'.join(full_text)
logger.info(f"Extracted {len(text)} characters from document")
return text
except Exception as e:
logger.error(f"Error extracting text from DOCX: {e}")
raise
def extract_data_using_gemini(text):
"""Extract event data using Gemini AI."""
if not model:
logger.error("Gemini model not configured")
return None
prompt = """
Extract the event counts from the following text. Look for data organized by academic years from 2018-2019 to 2022-2023.
Find numbers for these categories:
- Cultural competitions/events
- Sports competitions/events
- Technical fest/Academic fest
- Social activities/events
- Any other events through Active clubs and forums
Return ONLY a Python dictionary in this exact format:
{
'2022-2023': {'Cultural': X, 'Sports': Y, 'Technical': Z, 'Social': A, 'Other': B},
'2021-2022': {'Cultural': X, 'Sports': Y, 'Technical': Z, 'Social': A, 'Other': B},
'2020-2021': {'Cultural': X, 'Sports': Y, 'Technical': Z, 'Social': A, 'Other': B},
'2019-2020': {'Cultural': X, 'Sports': Y, 'Technical': Z, 'Social': A, 'Other': B},
'2018-2019': {'Cultural': X, 'Sports': Y, 'Technical': Z, 'Social': A, 'Other': B}
}
Replace X, Y, Z, A, B with the actual numbers from the text. If a number is not found, use 0.
"""
try:
# Debug: Look for patterns in text
years = re.findall(r'(20\d{2}-20\d{2})', text)
logger.info(f"Found years in text: {years}")
# Generate response using Gemini
response = model.generate_content(f"{text}\n\n{prompt}")
response_text = response.text.strip()
logger.info(f"Gemini response length: {len(response_text)}")
# Clean the response
if '```' in response_text:
# Extract code block
code_blocks = re.findall(r'```(?:python)?\s*(.*?)\s*```', response_text, re.DOTALL)
if code_blocks:
response_text = code_blocks[0].strip()
# Remove any extra whitespace and comments
response_text = re.sub(r'#.*$', '', response_text, flags=re.MULTILINE)
response_text = response_text.strip()
logger.info(f"Cleaned response: {response_text[:200]}...")
# Parse the response
try:
data = ast.literal_eval(response_text)
except (ValueError, SyntaxError):
# Fallback to JSON parsing
response_text = response_text.replace("'", '"')
data = json.loads(response_text)
# Validate data structure
if not isinstance(data, dict):
raise ValueError("Response is not a dictionary")
# Ensure all expected years are present
expected_years = ['2022-2023', '2021-2022', '2020-2021', '2019-2020', '2018-2019']
for year in expected_years:
if year not in data:
logger.warning(f"Missing year {year}, adding with zeros")
data[year] = {'Cultural': 0, 'Sports': 0, 'Technical': 0, 'Social': 0, 'Other': 0}
# Ensure all categories are present for each year
required_categories = ['Cultural', 'Sports', 'Technical', 'Social', 'Other']
for year in data:
for cat in required_categories:
if cat not in data[year]:
logger.warning(f"Missing category {cat} in year {year}, setting to 0")
data[year][cat] = 0
# Ensure values are integers
try:
data[year][cat] = int(data[year][cat])
except (ValueError, TypeError):
data[year][cat] = 0
logger.info(f"Successfully extracted data: {data}")
return data
except Exception as e:
logger.error(f"Error processing with Gemini: {e}")
return None
def get_graph_insights(data, plot_type):
"""Generate insights and SWOT analysis for different plot types."""
try:
df = pd.DataFrame(data).T
insights = {
'main_insight': "",
'swot': {
'strengths': [],
'weaknesses': [],
'opportunities': [],
'threats': []
},
'recommendations': []
}
if plot_type == 'bar':
total_by_category = df.sum()
max_category = total_by_category.idxmax()
min_category = total_by_category.idxmin()
avg_events = total_by_category.mean()
insights[
'main_insight'] = f"The most active category is {max_category} with {int(total_by_category[max_category])} total events, while {min_category} has the least with {int(total_by_category[min_category])} events."
insights['swot']['strengths'] = [
f"Strong performance in {max_category} events ({int(total_by_category[max_category])} total)",
f"Diverse event portfolio across {len(total_by_category)} categories",
f"Average of {avg_events:.1f} events per category shows balanced approach"
]
insights['swot']['weaknesses'] = [
f"Underperformance in {min_category} category",
f"Significant gap between highest and lowest performing categories",
"Potential resource allocation imbalances"
]
insights['swot']['opportunities'] = [
f"Growth potential in {min_category} category",
"Cross-category collaboration possibilities",
"Opportunity to standardize event quality"
]
insights['swot']['threats'] = [
"Over-reliance on dominant categories",
"Resource competition between categories",
"Sustainability challenges for high-volume categories"
]
insights['recommendations'] = [
f"Increase focus on {min_category} events",
"Implement balanced resource allocation strategy",
"Develop cross-category event initiatives"
]
elif plot_type == 'pie':
latest_year = '2022-2023'
year_data = data[latest_year]
total = sum(year_data.values())
max_cat = max(year_data.items(), key=lambda x: x[1])
min_cat = min(year_data.items(), key=lambda x: x[1])
if total > 0:
percentage = (max_cat[1] / total) * 100
insights[
'main_insight'] = f"In {latest_year}, {max_cat[0]} events dominated with {max_cat[1]} events ({percentage:.1f}% of total)."
else:
insights['main_insight'] = f"No events recorded for {latest_year}."
elif plot_type == 'line':
if len(df) > 1:
trend_direction = "increasing" if df.iloc[-1].mean() > df.iloc[0].mean() else "decreasing"
growth_rate = ((df.iloc[-1].mean() - df.iloc[0].mean()) / df.iloc[0].mean() * 100) if df.iloc[
0].mean() > 0 else 0
insights[
'main_insight'] = f"Overall trend shows {trend_direction} pattern with {growth_rate:.1f}% change in average events."
return insights
except Exception as e:
logger.error(f"Error generating insights: {e}")
return {
'main_insight': "Unable to generate insights for this visualization.",
'swot': {'strengths': [], 'weaknesses': [], 'opportunities': [], 'threats': []},
'recommendations': []
}
def create_plots(data):
"""Create various plots and analyses from the data."""
plots = {}
try:
df = pd.DataFrame(data).T
# Color scheme for consistency
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd']
# 1. Bar Chart - Events by Category and Year
fig1 = px.bar(
df,
barmode='group',
title='Event Distribution Across Years and Categories',
labels={'index': 'Year', 'value': 'Number of Events', 'variable': 'Category'},
color_discrete_sequence=colors
)
fig1.update_layout(
xaxis_title="Academic Year",
yaxis_title="Number of Events",
legend_title="Event Category",
template="plotly_white"
)
plots['bar'] = {
'plot': pio.to_html(fig1, full_html=False, div_id="bar-chart"),
'insight': get_graph_insights(data, 'bar')
}
# 2. Pie Chart - Latest Year Distribution
latest_year = '2022-2023'
if latest_year in data:
fig2 = px.pie(
names=list(data[latest_year].keys()),
values=list(data[latest_year].values()),
title=f'Event Distribution for {latest_year}',
color_discrete_sequence=colors
)
fig2.update_traces(textposition='inside', textinfo='percent+label')
plots['pie'] = {
'plot': pio.to_html(fig2, full_html=False, div_id="pie-chart"),
'insight': get_graph_insights(data, 'pie')
}
# 3. Line Chart - Trends Over Time
fig3 = px.line(
df,
markers=True,
title='Event Trends Over Years',
labels={'index': 'Year', 'value': 'Number of Events', 'variable': 'Category'},
color_discrete_sequence=colors
)
fig3.update_layout(
xaxis_title="Academic Year",
yaxis_title="Number of Events",
legend_title="Event Category",
template="plotly_white"
)
plots['line'] = {
'plot': pio.to_html(fig3, full_html=False, div_id="line-chart"),
'insight': get_graph_insights(data, 'line')
}
# 4. Stacked Area Chart
fig4 = px.area(
df,
title='Cumulative Event Distribution Over Years',
labels={'index': 'Year', 'value': 'Number of Events', 'variable': 'Category'},
color_discrete_sequence=colors
)
fig4.update_layout(
xaxis_title="Academic Year",
yaxis_title="Number of Events",
legend_title="Event Category",
template="plotly_white"
)
plots['area'] = {
'plot': pio.to_html(fig4, full_html=False, div_id="area-chart"),
'insight': get_graph_insights(data, 'area')
}
# 5. Statistical Summary
total_events = df.sum().sum()
avg_events_per_year = df.sum(axis=1).mean()
most_active_year = df.sum(axis=1).idxmax()
most_common_category = df.sum().idxmax()
stats = {
'total_events': int(total_events),
'avg_events_per_year': round(avg_events_per_year, 1),
'most_active_year': most_active_year,
'most_common_category': most_common_category,
'category_totals': df.sum().to_dict(),
'yearly_totals': df.sum(axis=1).to_dict()
}
plots['stats'] = stats
logger.info("Successfully created all plots")
return plots
except Exception as e:
logger.error(f"Error creating plots: {e}")
return None
def allowed_file(filename):
"""Check if the uploaded file is allowed."""
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ['docx']
@app.route('/', methods=['GET', 'POST'])
def index():
"""Main route for the application."""
plots = None
if request.method == 'POST':
# Check if file is uploaded
if 'document' not in request.files:
flash('No file uploaded. Please select a DOCX file.', 'error')
return redirect(request.url)
file = request.files['document']
if file.filename == '':
flash('No file selected. Please choose a DOCX file.', 'error')
return redirect(request.url)
if not allowed_file(file.filename):
flash('Invalid file type. Please upload a DOCX file.', 'error')
return redirect(request.url)
if file:
try:
ensure_upload_folder()
# Secure the filename
filename = secure_filename(file.filename)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{timestamp}_{filename}"
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
# Save the file
file.save(file_path)
logger.info(f"File saved: {file_path}")
# Extract text
text = extract_text_from_docx(file_path)
if not text.strip():
flash('The uploaded document appears to be empty. Please check the file.', 'error')
return redirect(request.url)
# Extract data using Gemini
data = extract_data_using_gemini(text)
if data:
# Create plots
plots = create_plots(data)
if plots:
flash('Document processed successfully! π', 'success')
else:
flash('Error creating visualizations. Please try again.', 'error')
else:
flash(
'Could not extract event data from the document. Please ensure the document contains event statistics in the expected format.',
'error')
# Clean up uploaded file
try:
os.remove(file_path)
logger.info(f"Cleaned up file: {file_path}")
except Exception as e:
logger.warning(f"Could not remove file {file_path}: {e}")
except Exception as e:
logger.error(f"Error processing document: {e}")
flash(f'Error processing document: {str(e)}', 'error')
return render_template('index.html', plots=plots)
@app.errorhandler(413)
def too_large(e):
"""Handle file too large error."""
flash("File too large. Please upload a file smaller than 16MB.", 'error')
return redirect(request.url)
@app.errorhandler(404)
def not_found(e):
"""Handle 404 errors."""
return render_template('404.html'), 404
@app.errorhandler(500)
def internal_error(e):
"""Handle internal server errors."""
logger.error(f"Internal server error: {e}")
flash('An internal error occurred. Please try again.', 'error')
return redirect(url_for('index'))
if __name__ == '__main__':
print("π Starting Event Analytics Application...")
print("π Upload a DOCX file to analyze event data")
print("π Access the application at: http://localhost:5001")
if not model:
print("β οΈ Warning: Gemini API not configured. Please set GOOGLE_API_KEY environment variable.")
app.run(debug=True, port=5001, host='0.0.0.0') |