File size: 24,352 Bytes
feabcc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
from flask import Flask, render_template, request, session, redirect, url_for, flash
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from collections import defaultdict, Counter
import json
import os
import google.generativeai as genai
import tempfile
from pathlib import Path
import time
from dotenv import load_dotenv
from tenacity import retry, stop_after_attempt, wait_exponential
import traceback

app = Flask(__name__)
app.secret_key = '0fdd675e2c6f513deb04c79bd7ddb7e0'  # IMPORTANT: Change this to a strong, random key in production
app.config['UPLOAD_FOLDER'] = 'uploads'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024  # 16MB max file size
app.config['TEMP_FOLDER'] = Path(tempfile.gettempdir()) / 'placement_analyzer'

# Update the Gemini configuration to use environment variable
load_dotenv()

# Make sure API key is available
api_key ="AIzaSyBLcWuSj6N1bkhQsTF4kt3_hFh4ibH11pQ"
if not api_key:
    print("WARNING: GEMINI_API_KEY not found in environment variables. AI insights will not be available.")
    model = None
else:
    try:
        genai.configure(api_key=api_key)
        model = genai.GenerativeModel('gemini-2.0-flash')
        print("Gemini model configured successfully.")
    except Exception as e:
        print(f"Error configuring Gemini model: {e}. AI insights will not be available.")
        model = None


def validate_data_columns(data, required_columns):
    """

    Validate that the DataFrame contains all required columns.

    """
    # Create a mapping of lowercase column names to actual column names
    column_mapping = {col.lower(): col for col in data.columns}

    # Check if required columns exist (case-insensitive)
    actual_required_columns = []
    missing_columns = []
    for req_col in required_columns:
        if req_col.lower() in column_mapping:
            actual_required_columns.append(column_mapping[req_col.lower()])
        else:
            missing_columns.append(req_col)

    if missing_columns:
        raise ValueError(
            f"Missing required columns: {', '.join(missing_columns)}. Please ensure your CSV has the correct column names.")

    # Validate data types and non-empty values
    if 'Package' in actual_required_columns:
        data['Package'] = pd.to_numeric(data['Package'], errors='coerce')
        if data['Package'].isna().all():
            raise ValueError("Package column contains no valid numeric values or is entirely empty.")

    if 'Year of Placement' in actual_required_columns:  # This might be 'Year' after rename, but check original
        # Use the actual column name for 'Year of Placement' if it exists
        year_col_name = column_mapping.get('year of placement', None)
        if year_col_name and not data[year_col_name].isna().all():
            data[year_col_name] = pd.to_numeric(data[year_col_name], errors='coerce')
            if data[year_col_name].isna().all():
                raise ValueError("Year of Placement column contains no valid numeric values or is entirely empty.")
        elif year_col_name:  # If column exists but is all NA
            raise ValueError("Year of Placement column is entirely empty.")

    return True


def generate_graphs(data):
    """

    Generate comprehensive graphs based on the provided placement data.

    """
    graphs = []

    try:
        print(f"Generating graphs for {len(data)} records...")

        # Ensure column names are standardized for graph generation
        data.columns = [col.replace('Year of Placement', 'Year').replace('Post', 'Role') for col in data.columns]

        # 1. Department-wise Placement Distribution
        if 'Department' in data.columns and not data['Department'].isna().all():
            print("Generating Department-wise Placement Distribution...")
            department_counts = data['Department'].value_counts().reset_index()
            department_counts.columns = ['Department', 'Count']
            fig1 = px.bar(department_counts,
                          x='Department', y='Count',
                          title="Department-wise Placement Distribution",
                          color_discrete_sequence=['#2563eb'])
            fig1.update_layout(height=500, xaxis_title="Department", yaxis_title="Number of Placements")
            graphs.append({"graph": fig1.to_html(full_html=False), "title": "Department-wise Placement Distribution"})

        # 2. Package Distribution
        if 'Package' in data.columns and not data['Package'].isna().all():
            print("Generating Package Distribution...")
            package_data = data.dropna(subset=['Package'])
            if not package_data.empty:
                fig2 = px.histogram(package_data,
                                    x='Package',
                                    title="Distribution of Package Values",
                                    color_discrete_sequence=['#10b981'])
                fig2.update_layout(height=500, xaxis_title="Package (e.g., in LPA)", yaxis_title="Number of Students")
                graphs.append({"graph": fig2.to_html(full_html=False), "title": "Distribution of Package Values"})

        # 3. Average Package by Department
        if all(col in data.columns for col in ['Department', 'Package']):
            print("Generating Average Package by Department...")
            clean_data = data.dropna(subset=['Department', 'Package'])
            if not clean_data.empty:
                avg_package = clean_data.groupby('Department')['Package'].mean().reset_index()
                fig3 = px.bar(avg_package,
                              x='Department', y='Package',
                              title="Average Package by Department",
                              color_discrete_sequence=['#3b82f6'])
                fig3.update_layout(height=500, xaxis_title="Department", yaxis_title="Average Package (e.g., in LPA)")
                graphs.append({"graph": fig3.to_html(full_html=False), "title": "Average Package by Department"})

        # 4. Year-wise Placement Trends (Using 'Year' column after rename)
        if 'Year' in data.columns and not data['Year'].isna().all():
            print("Generating Year-wise Placement Trends...")
            year_counts = data['Year'].value_counts().sort_index().reset_index()
            year_counts.columns = ['Year', 'Count']
            fig4 = px.line(year_counts,
                           x='Year', y='Count',
                           title="Placement Trends Over Years",
                           markers=True,
                           color_discrete_sequence=['#f59e0b'])
            fig4.update_layout(height=500, xaxis_title="Year", yaxis_title="Number of Placements")
            graphs.append({"graph": fig4.to_html(full_html=False), "title": "Placement Trends Over Years"})

        # 5. Company-wise Placements
        if 'Company' in data.columns and not data['Company'].isna().all():
            print("Generating Company-wise Placements...")
            top_companies = data['Company'].value_counts().head(10).reset_index()
            top_companies.columns = ['Company', 'Count']
            fig5 = px.pie(top_companies,
                          values='Count', names='Company',
                          title="Top 10 Recruiting Companies",
                          hole=0.4)
            fig5.update_layout(height=500, margin=dict(t=50, b=50, l=50, r=50))
            graphs.append({"graph": fig5.to_html(full_html=False), "title": "Top 10 Recruiting Companies"})

        # 6. Top 10 Job Roles
        if 'Role' in data.columns and not data['Role'].isna().all():
            print("Generating Top 10 Job Roles...")
            top_roles = data['Role'].value_counts().head(10).reset_index()
            top_roles.columns = ['Role', 'Count']
            fig6 = px.bar(top_roles, x='Count', y='Role', orientation='h',
                          title='Top 10 Job Roles Placed',
                          color_discrete_sequence=px.colors.qualitative.Pastel)
            fig6.update_layout(height=500, yaxis={'categoryorder': 'total ascending'},
                               xaxis_title="Number of Placements", yaxis_title="Job Role")
            graphs.append({"graph": fig6.to_html(full_html=False), "title": "Top 10 Job Roles Placed"})

        print(f"Generated {len(graphs)} graphs successfully")
        return graphs

    except Exception as e:
        print(f"Error generating graphs: {str(e)}")
        traceback.print_exc()
        return []


@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def generate_single_insight(prompt, model):
    try:
        response = model.generate_content(
            prompt + "\n\nProvide a brief analysis in 2-3 concise bullet points, formatted as HTML <ul><li> tags. Ensure the output is only the HTML."
        )
        if not response or not response.text:
            print("Empty response received from Gemini")
            return "<ul><li>No insight generated - empty response from AI.</li></ul>"

        # Clean the response to ensure it's valid HTML ul/li
        clean_text = response.text.replace('```html', '').replace('```', '').strip()
        if not clean_text.startswith('<ul>') or not clean_text.endswith('</ul>'):
            # If AI doesn't format it, try to make it list-like or a single point
            lines = [line.strip() for line in clean_text.split('\n') if line.strip()]
            if lines:
                return "<ul>" + "".join([f"<li>{line.lstrip('- ').lstrip('* ')}</li>" for line in lines]) + "</ul>"
            else:
                return "<ul><li>AI insight could not be properly formatted.</li></ul>"
        return clean_text
    except Exception as e:
        print(f"Error in generate_single_insight: {type(e).__name__}: {str(e)}")
        raise


def generate_insights(data, graph_titles):
    """

    Generate insights for each graph using Gemini AI with retry logic

    """
    if not model:
        print("No AI model available, returning default insights")
        return ["<ul><li>AI insights not available - missing API key or configuration error.</li></ul>"] * len(
            graph_titles)

    insights = []

    # Ensure column names are standardized for data access
    data.columns = [col.replace('Year of Placement', 'Year').replace('Post', 'Role') for col in data.columns]

    try:
        # Calculate statistics for insights with null checking
        stats = {
            'total_placements': len(data),
            'avg_package': round(data['Package'].mean(), 2) if 'Package' in data.columns and not data[
                'Package'].isna().all() else 'N/A',
            'departments': data['Department'].nunique() if 'Department' in data.columns and not data[
                'Department'].isna().all() else 'N/A',
            'companies': data['Company'].nunique() if 'Company' in data.columns and not data[
                'Company'].isna().all() else 'N/A',
            'max_package': round(data['Package'].max(), 2) if 'Package' in data.columns and not data[
                'Package'].isna().all() else 'N/A',
            'min_package': round(data['Package'].min(), 2) if 'Package' in data.columns and not data[
                'Package'].isna().all() else 'N/A',
            'median_package': round(data['Package'].median(), 2) if 'Package' in data.columns and not data[
                'Package'].isna().all() else 'N/A',
            'years_covered': f"{data['Year'].min()}-{data['Year'].max()}" if 'Year' in data.columns and not data[
                'Year'].isna().all() and len(data['Year'].dropna().unique()) > 1 else str(
                data['Year'].min()) if 'Year' in data.columns and not data['Year'].isna().all() else 'N/A',
            'top_department': data['Department'].value_counts().idxmax() if 'Department' in data.columns and not data[
                'Department'].isna().all() else 'N/A',
            'top_company': data['Company'].value_counts().idxmax() if 'Company' in data.columns and not data[
                'Company'].isna().all() else 'N/A',
            'top_role': data['Role'].value_counts().idxmax() if 'Role' in data.columns and not data[
                'Role'].isna().all() else 'N/A'
        }

        # Context for AI model
        overall_context = f"""

        Here is a summary of the placement data:

        - Total Placements: {stats['total_placements']}

        - Departments involved: {stats['departments']}

        - Unique Companies: {stats['companies']}

        - Average Package: {stats['avg_package']}

        - Maximum Package: {stats['max_package']}

        - Minimum Package: {stats['min_package']}

        - Median Package: {stats['median_package']}

        - Years Covered: {stats['years_covered']}

        - Most Placements by Department: {stats['top_department']}

        - Most Placements by Company: {stats['top_company']}

        - Most Placements by Role: {stats['top_role']}

        """

        # Map graph titles to specific prompts for tailored insights
        prompt_map = {
            "Department-wise Placement Distribution": f"""{overall_context}

            The graph shows the distribution of placements across different departments. What are the key observations regarding which departments have the most/least placements, and any significant disparities?""",

            "Distribution of Package Values": f"""{overall_context}

            The graph displays the frequency distribution of package values. What does this reveal about typical salary ranges, outliers, and the overall earning potential?""",

            "Average Package by Department": f"""{overall_context}

            This graph presents the average package offered per department. What insights can be drawn about the earning potential differences between departments?""",

            "Placement Trends Over Years": f"""{overall_context}

            This graph illustrates the number of placements over the years. What trends (growth, decline, stability) can be identified in placement activity over time?""",

            "Top 10 Recruiting Companies": f"""{overall_context}

            This graph shows the top 10 companies by the number of placements. What does this indicate about the primary recruiters and their impact on placements?""",

            "Top 10 Job Roles Placed": f"""{overall_context}

            This graph displays the top 10 job roles students were placed in. What are the predominant job types or career paths for these students?"""
        }

        for title in graph_titles:
            prompt = prompt_map.get(title, f"{overall_context}\n\nProvide key insights for a graph titled '{title}'.")
            try:
                print(f"Generating insight for graph: '{title}'...")
                insight = generate_single_insight(prompt, model)
                insights.append(insight)
            except Exception as e:
                print(f"Failed to generate insight for '{title}' after retries: {type(e).__name__}: {str(e)}")
                insights.append("<ul><li>Unable to generate insight for this graph at this time.</li></ul>")

        return insights

    except Exception as e:
        print(f"Error in generate_insights overall: {type(e).__name__}: {str(e)}")
        traceback.print_exc()
        return ["<ul><li>Error generating insights. Please try again.</li></ul>"] * len(graph_titles)


@app.route('/', methods=['GET', 'POST'])
def home():
    """

    Handle placement data upload and analysis

    """
    print(f"Request method: {request.method}")
    print(f"Request form keys: {list(request.form.keys())}")
    print(f"Request files keys: {list(request.files.keys())}")

    if request.method == 'POST':
        print("POST request received")

        # Check if upload_csv button was clicked - THIS IS THE KEY CHECK
        if 'upload_csv' not in request.form:
            print("upload_csv not in form (this means the button's name/value wasn't sent)")
            flash("Invalid form submission or button not recognized. Please try again.", "error")
            return redirect(url_for('home'))

        # Check if file was uploaded
        if 'file' not in request.files:
            print("No file part in request")
            flash("No file selected", "error")
            return redirect(url_for('home'))

        file = request.files['file']
        print(f"File received: {file.filename}")

        # Check if file was actually selected
        if file.filename == '':
            print("No file selected (empty filename)")
            flash("No file selected", "error")
            return redirect(url_for('home'))

        # Check file extension
        if not file.filename.lower().endswith('.csv'):
            print("Invalid file type (not .csv)")
            flash("Please upload a CSV file", "error")
            return redirect(url_for('home'))

        try:
            print("Processing CSV file...")

            # Read CSV data directly from the file stream
            data = pd.read_csv(file.stream)
            print(f"CSV loaded successfully with {len(data)} rows and {len(data.columns)} columns")
            print(f"Columns before cleaning: {list(data.columns)}")

            if data.empty:
                flash("Uploaded file is empty or invalid. Please upload a valid CSV.", "error")
                return redirect(url_for('home'))

            # Clean column names (strip whitespace, make consistent case for internal use)
            data.columns = data.columns.str.strip()
            print(f"Cleaned columns: {list(data.columns)}")

            # Required columns (exact expected names in the CSV)
            # The validation function will check these case-insensitively
            required_csv_columns = ['Name', 'Department', 'Company', 'Post', 'Package', 'Year of Placement',
                                    'Graduation Year']

            # Validate data columns
            try:
                validate_data_columns(data.copy(),
                                      required_csv_columns)  # Pass a copy to avoid modifying original during validation
            except ValueError as ve:
                print(f"Validation error: {str(ve)}")
                flash(f"Invalid data or missing columns: {str(ve)}", "error")
                return redirect(url_for('home'))

            # Rename columns for consistency *after* validation check, for internal use
            # Use a dictionary comprehension to ensure we only rename if the column exists
            rename_map = {
                col: new_name for col_check, new_name in [('Year of Placement', 'Year'), ('Post', 'Role')]
                for col in data.columns if col.lower() == col_check.lower()
            }
            data = data.rename(columns=rename_map)
            print("Columns potentially renamed for internal processing.")
            print(f"Columns after renaming for processing: {list(data.columns)}")

            # Generate graphs and insights
            print("Generating graphs...")
            graphs_info = generate_graphs(data.copy())  # Pass a copy
            graph_html_list = [item["graph"] for item in graphs_info]
            graph_titles_list = [item["title"] for item in graphs_info]
            print(f"Generated {len(graph_html_list)} graphs")

            print("Generating insights...")
            insights_list = generate_insights(data.copy(), graph_titles_list)  # Pass a copy
            print(f"Generated {len(insights_list)} insights")

            # Ensure we have matching pairs
            min_length = min(len(graph_html_list), len(insights_list))
            if min_length == 0:
                flash("No graphs or insights could be generated from the data. Please check file format and content.",
                      "error")
                return redirect(url_for('home'))

            final_graphs_and_insights = [{"graph": g, "insight": i}
                                         for g, i in zip(graph_html_list[:min_length], insights_list[:min_length])]

            # Store analysis results
            # Generate a unique ID for this analysis session
            session['analysis_id'] = f"analysis_{int(time.time())}"

            # Create temp directory and save results
            try:
                analysis_path_dir = app.config['TEMP_FOLDER'] / session['analysis_id']
                os.makedirs(analysis_path_dir, exist_ok=True)
                analysis_file_path = analysis_path_dir / 'data.json'

                with open(analysis_file_path, 'w') as f:
                    json.dump({
                        'graphs': graph_html_list[:min_length],
                        'insights': insights_list[:min_length]
                    }, f)
                print(f"Analysis results saved successfully to {analysis_file_path}")
            except Exception as e:
                print(f"Error saving analysis to temporary file: {str(e)}")
                traceback.print_exc()
                flash("Analysis completed, but there was an issue saving the results temporarily.", "warning")
                # Continue displaying results even if saving fails

            flash("Analysis completed successfully! Scroll down to see the results.", "success")
            return render_template('index.html', graphs_and_insights=final_graphs_and_insights)

        except pd.errors.EmptyDataError:
            flash("The uploaded CSV file is empty. Please upload a file with data.", "error")
            return redirect(url_for('home'))
        except pd.errors.ParserError:
            flash("Could not parse the CSV file. Please ensure it's a valid CSV format.", "error")
            return redirect(url_for('home'))
        except Exception as e:
            error_msg = f"An unexpected error occurred while processing your file: {str(e)}. Please check the file's content and try again."
            print(error_msg)
            traceback.print_exc()
            flash(error_msg, "error")
            return redirect(url_for('home'))

    # Handle GET requests
    print("GET request - checking for saved analysis...")
    analysis_id = session.get('analysis_id')
    graphs_and_insights = []
    if analysis_id:
        analysis_file_path = app.config['TEMP_FOLDER'] / analysis_id / 'data.json'
        if analysis_file_path.exists():
            try:
                with open(analysis_file_path) as f:
                    data = json.load(f)
                    print(f"Loaded saved analysis from {analysis_file_path}")
                    graphs_and_insights = [{"graph": g, "insight": i}
                                           for g, i in zip(data['graphs'], data['insights'])]
            except Exception as e:
                print(f"Error loading saved analysis: {str(e)}")
                traceback.print_exc()
                # If loading fails, clear session to prevent re-attempting with a corrupt ID
                session.pop('analysis_id', None)
                flash("Could not load previous analysis. Please upload your file again.", "warning")

    print("Rendering template.")
    return render_template('index.html', graphs_and_insights=graphs_and_insights)


@app.errorhandler(413)
def too_large(e):
    flash("File is too large. Maximum file size is 16MB.", "error")
    return redirect(url_for('home'))


@app.errorhandler(400)
def bad_request(e):
    flash("Bad request. Please check your input and try again.", "error")
    return redirect(url_for('home'))


if __name__ == '__main__':
    # Create necessary directories
    os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
    os.makedirs(app.config['TEMP_FOLDER'], exist_ok=True)

    print("Flask app starting...")
    print(f"Upload folder: {app.config['UPLOAD_FOLDER']}")
    print(f"Temp folder: {app.config['TEMP_FOLDER']}")

    # Run in debug mode, set debug=False for production
    app.run(debug=True, port=2541)