File size: 14,268 Bytes
429a26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import os
import json
from datetime import datetime, timedelta
from typing import Dict, List, Optional
import logging
try:
    from PIL import Image
except ImportError:
    Image = None
try:
    import google.generativeai as genai
except ImportError:
    genai = None
from models import DiseaseDetection, Farm, db

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class DiseaseDetectionService:
    """Service for AI-powered crop disease detection and treatment recommendations"""
    
    def __init__(self, gemini_api_key: str):
        self.gemini_api_key = gemini_api_key
        genai.configure(api_key=gemini_api_key)
        self.model = genai.GenerativeModel('gemini-2.0-flash')
        
        # Common diseases database for quick reference
        self.disease_database = {
            'rice': {
                'blast': {
                    'symptoms': 'Diamond-shaped lesions on leaves, brown borders with gray centers',
                    'treatment': 'Apply fungicides like Tricyclazole, improve drainage',
                    'prevention': 'Use resistant varieties, avoid excessive nitrogen'
                },
                'bacterial_blight': {
                    'symptoms': 'Water-soaked lesions that turn yellow then brown',
                    'treatment': 'Copper-based bactericides, remove infected plants',
                    'prevention': 'Use certified seeds, avoid overhead irrigation'
                }
            },
            'wheat': {
                'rust': {
                    'symptoms': 'Orange-red pustules on leaves and stems',
                    'treatment': 'Fungicides like Propiconazole, early application',
                    'prevention': 'Resistant varieties, proper spacing'
                },
                'powdery_mildew': {
                    'symptoms': 'White powdery growth on leaves',
                    'treatment': 'Sulfur-based fungicides, improve air circulation',
                    'prevention': 'Avoid dense planting, reduce humidity'
                }
            },
            'tomato': {
                'late_blight': {
                    'symptoms': 'Dark green water-soaked spots, white mold on leaf undersides',
                    'treatment': 'Copper fungicides, remove infected parts',
                    'prevention': 'Improve ventilation, avoid overhead watering'
                },
                'early_blight': {
                    'symptoms': 'Concentric rings on leaves, starts from bottom',
                    'treatment': 'Fungicides, remove lower leaves',
                    'prevention': 'Crop rotation, proper spacing'
                }
            }
        }
    
    def analyze_disease_from_text(self, farm_id: int, crop_name: str, symptoms: str) -> Dict:
        """Analyze disease based on text symptoms description"""
        try:
            farm = Farm.query.get(farm_id)
            if not farm:
                return {'error': 'Farm not found'}
            
            # Create prompt for Gemini AI
            prompt = self._create_disease_analysis_prompt(crop_name, symptoms)
            
            # Get AI analysis
            response = self.model.generate_content(prompt)
            ai_analysis = self._parse_disease_response(response.text)
            
            # Save to database
            detection = DiseaseDetection(
                farm_id=farm_id,
                crop_name=crop_name,
                disease_name=ai_analysis.get('disease_name', 'Unknown'),
                confidence_score=ai_analysis.get('confidence', 0.0),
                symptoms=symptoms,
                treatment=ai_analysis.get('treatment', ''),
                prevention=ai_analysis.get('prevention', ''),
                ai_analysis=json.dumps(ai_analysis),
                severity=ai_analysis.get('severity', 'unknown')
            )
            
            db.session.add(detection)
            db.session.commit()
            
            return {
                'success': True,
                'detection_id': detection.id,
                'analysis': ai_analysis
            }
            
        except Exception as e:
            logger.error(f"Error analyzing disease: {str(e)}")
            return {'error': f'Analysis failed: {str(e)}'}
    
    def analyze_disease_from_image(self, farm_id: int, crop_name: str, image_path: str, symptoms: str = "") -> Dict:
        """Analyze disease from uploaded image"""
        try:
            farm = Farm.query.get(farm_id)
            if not farm:
                return {'error': 'Farm not found'}
            
            # Verify image exists
            if not os.path.exists(image_path):
                return {'error': 'Image file not found'}
            
            # Create prompt for image analysis
            prompt = self._create_image_analysis_prompt(crop_name, symptoms)
            
            # Load and process image
            image = Image.open(image_path)
            
            # Get AI analysis with image
            response = self.model.generate_content([prompt, image])
            ai_analysis = self._parse_disease_response(response.text)
            
            # Save to database
            detection = DiseaseDetection(
                farm_id=farm_id,
                crop_name=crop_name,
                disease_name=ai_analysis.get('disease_name', 'Unknown'),
                confidence_score=ai_analysis.get('confidence', 0.0),
                symptoms=symptoms,
                treatment=ai_analysis.get('treatment', ''),
                prevention=ai_analysis.get('prevention', ''),
                image_path=image_path,
                ai_analysis=json.dumps(ai_analysis),
                severity=ai_analysis.get('severity', 'unknown')
            )
            
            db.session.add(detection)
            db.session.commit()
            
            return {
                'success': True,
                'detection_id': detection.id,
                'analysis': ai_analysis
            }
            
        except Exception as e:
            logger.error(f"Error analyzing disease from image: {str(e)}")
            return {'error': f'Image analysis failed: {str(e)}'}
    
    def _create_disease_analysis_prompt(self, crop_name: str, symptoms: str) -> str:
        """Create prompt for disease analysis"""
        return f"""

You are an expert plant pathologist. Analyze the following crop disease symptoms and provide a detailed diagnosis.



CROP: {crop_name}

SYMPTOMS: {symptoms}



Please provide your analysis in the following JSON format:

{{

  "disease_name": "Most likely disease name",

  "confidence": 0.85,

  "severity": "mild/moderate/severe",

  "symptoms_analysis": "Detailed analysis of symptoms",

  "treatment": "Immediate treatment recommendations",

  "prevention": "Future prevention measures",

  "additional_info": "Any additional relevant information",

  "urgency": "low/medium/high"

}}



Consider:

1. Common diseases for this crop

2. Seasonal factors

3. Environmental conditions

4. Treatment urgency

5. Cost-effective solutions for farmers



Provide practical, actionable advice that farmers can easily implement.

"""
    
    def _create_image_analysis_prompt(self, crop_name: str, symptoms: str = "") -> str:
        """Create prompt for image-based disease analysis"""
        base_prompt = f"""

You are an expert plant pathologist. Analyze this image of {crop_name} crop for signs of disease or pest damage.



CROP: {crop_name}

"""
        
        if symptoms:
            base_prompt += f"REPORTED SYMPTOMS: {symptoms}\n"
        
        base_prompt += """

Please examine the image carefully and provide your analysis in the following JSON format:

{

  "disease_name": "Identified disease or pest issue",

  "confidence": 0.85,

  "severity": "mild/moderate/severe",

  "visual_symptoms": "What you observe in the image",

  "treatment": "Immediate treatment recommendations",

  "prevention": "Future prevention measures",

  "affected_area": "Percentage of plant affected",

  "urgency": "low/medium/high",

  "additional_observations": "Any other relevant findings"

}



Look for:

1. Leaf discoloration or spots

2. Wilting or deformation

3. Pest damage

4. Fungal growth

5. Nutrient deficiencies

6. Environmental stress signs



Provide practical, cost-effective treatment recommendations suitable for farmers.

"""
        return base_prompt
    
    def _parse_disease_response(self, response_text: str) -> Dict:
        """Parse AI response and extract disease information"""
        try:
            # Try to extract JSON from response
            start_idx = response_text.find('{')
            end_idx = response_text.rfind('}') + 1
            
            if start_idx != -1 and end_idx != -1:
                json_text = response_text[start_idx:end_idx]
                analysis = json.loads(json_text)
                
                # Ensure required fields
                analysis.setdefault('disease_name', 'Unknown Disease')
                analysis.setdefault('confidence', 0.5)
                analysis.setdefault('severity', 'moderate')
                analysis.setdefault('treatment', 'Consult agricultural expert')
                analysis.setdefault('prevention', 'Maintain good crop hygiene')
                analysis.setdefault('urgency', 'medium')
                
                return analysis
            else:
                # Manual parsing if JSON not found
                return self._manual_parse_response(response_text)
                
        except json.JSONDecodeError:
            return self._manual_parse_response(response_text)
        except Exception as e:
            logger.error(f"Error parsing disease response: {str(e)}")
            return self._get_fallback_analysis()
    
    def _manual_parse_response(self, response_text: str) -> Dict:
        """Manually parse response if JSON parsing fails"""
        analysis = {
            'disease_name': 'Unknown Disease',
            'confidence': 0.5,
            'severity': 'moderate',
            'treatment': 'Consult agricultural expert',
            'prevention': 'Maintain good crop hygiene',
            'urgency': 'medium'
        }
        
        lines = response_text.lower().split('\n')
        
        for line in lines:
            if 'disease' in line and 'name' in line:
                analysis['disease_name'] = line.split(':')[-1].strip()
            elif 'treatment' in line:
                analysis['treatment'] = line.split(':')[-1].strip()
            elif 'prevention' in line:
                analysis['prevention'] = line.split(':')[-1].strip()
            elif 'severe' in line:
                analysis['severity'] = 'severe'
            elif 'mild' in line:
                analysis['severity'] = 'mild'
        
        return analysis
    
    def _get_fallback_analysis(self) -> Dict:
        """Provide fallback analysis when AI fails"""
        return {
            'disease_name': 'Analysis Failed',
            'confidence': 0.0,
            'severity': 'unknown',
            'treatment': 'Please consult with a local agricultural expert or extension officer',
            'prevention': 'Maintain good crop hygiene and monitoring practices',
            'urgency': 'medium',
            'error': 'AI analysis unavailable'
        }
    
    def get_disease_history(self, farm_id: int, days: int = 30) -> List[DiseaseDetection]:
        """Get disease detection history for a farm"""
        from_date = datetime.now() - timedelta(days=days)
        
        return DiseaseDetection.query.filter(
            DiseaseDetection.farm_id == farm_id,
            DiseaseDetection.detected_at >= from_date
        ).order_by(DiseaseDetection.detected_at.desc()).all()
    
    def update_treatment_status(self, detection_id: int, status: str, notes: str = "") -> bool:
        """Update treatment status for a disease detection"""
        try:
            detection = DiseaseDetection.query.get(detection_id)
            if not detection:
                return False
            
            detection.status = status
            if status == 'resolved':
                detection.resolved_at = datetime.now()
            
            db.session.commit()
            return True
            
        except Exception as e:
            logger.error(f"Error updating treatment status: {str(e)}")
            return False
    
    def get_preventive_recommendations(self, crop_name: str, season: str = "") -> Dict:
        """Get preventive recommendations for common diseases"""
        crop_lower = crop_name.lower()
        
        if crop_lower in self.disease_database:
            diseases = self.disease_database[crop_lower]
            recommendations = []
            
            for disease, info in diseases.items():
                recommendations.append({
                    'disease': disease.replace('_', ' ').title(),
                    'prevention': info['prevention'],
                    'early_symptoms': info['symptoms']
                })
            
            return {
                'crop': crop_name,
                'recommendations': recommendations,
                'general_tips': [
                    'Regular field monitoring',
                    'Proper crop rotation',
                    'Maintain field hygiene',
                    'Use disease-resistant varieties',
                    'Proper water management'
                ]
            }
        
        return {
            'crop': crop_name,
            'recommendations': [],
            'general_tips': [
                'Regular field monitoring is essential',
                'Maintain proper spacing between plants',
                'Ensure good drainage',
                'Use certified seeds',
                'Follow integrated pest management'
            ]
        }